2) Пусть (m – 3)(m + 3) < 0, т.е. –3 < m < 3. Тогда неравенство имеет решение х > 1/(m – 3).
3) Пусть (m – 3)(m + 3) = 0, т.е. m = 3 или m = -3. Тогда если m = 3, то неравенство примет вид 0×х < 6 и, значит выполняется при любом хÎR. Если же m = -3, то неравенство примет вид 0×х < 0 и, следовательно, не имеет решении.
Пример:Для каждого неотрицательного значения параметра а решить неравенство
4а3х4 + 4а2х2 + 32х + а + 8 ³ 0.
Решение. Левая часть неравенства представляет собой многочлен как относительно х, так и относительно параметра а. Степени соответственно равны 4 и 3. Однако если умножить многочлен на а, а затем сделать замену y = ax, то в новом многочлене максимальная степень параметра а будет равна 2. Случай а = 0 дает нам ответ х ³ - ¼. Будем теперь считать, что а > 0. Умножив обе части неравенства на а и сделав замену y = ax, получим
4y4 + 4ay2 + 32y + a2 + 8a ³ 0.
Левая часть представляет собой квадратный трехчлен относительно а:
a2 + (4y2 + 8)a + 4y2 + 32y ³ 0,
¼D = (2y2 + 4) 2 – 4y2 – 32y = 16(y – 1) 2.
Раскладывая левую часть неравенства на множители, получим
(а + 2y2 + 4y)(a + 2y2 – 4y + 8) ³ 0,
или
(2y2 + 4y + a)(2y2 – 4y + 8 + a) ³ 0.
Второй множитель положителен при всех y, если а > 0. Приходим к неравенству 2y2 + 4y + a ³ 0, откуда, если 0 < a < 2, y£ ½(-2 -) или y ³½(-2+); если а ³ 2, y – любое. Возвращаясь к х, получим ответ.
Ответ: Если а = 0, то х ³ - ¼; если 0 < a < 2, то х £ 1/2a*(-2 - ) или х ³ 1/2a(-2 + ); если а ³ 2, то х – любое.
Следовательно, множество всех решении системы неравенств (1) составляет интервал (5, 7).
Пример: Решить систему неравенств
х2 – 6х + 10 < 0,> 0.
Решим сначала неравенство
х2 – 6х + 10 < 0.
Применяя метод выделения полного квадрата, можно написать, что
х2 – 6х + 10 = х2 - 2×х×3 + 32 - 32 + 10 = (х – 3) 2 +1.
Поэтому неравенство (2) можно записать в виде
(х – 3) 2+ 1 < 0,
откуда видно, что оно не имеет решении.
Теперь можно не решать неравенство
> 0,
так как ответ уже ясен: система (1) не имеет решении.
Пример: Решить систему неравенств
< 1,x2 < 64.
Рассмотрим сначала первое неравенство; имеем
- 1 < 0, < 0.
С помощью кривой знаков (рис. 4) находим решения этого неравенства: х < -2; 0 < x < 2.
Решим теперь второе неравенство заданной системы. Имеем x2 - 64< 0, или (х – 8)(х + 8) < 0. С помощью кривой знаков (рис. 5) находим решения неравенства: -8 < x < 8.
Отметив найденные решения первого и второго неравенства на общей числовой прямой (рис. 6), найдем такие промежутки, где эти решения совпадают (пресечение решении): -8 < x < -2; 0 < x < 2. Это и есть решение системы.
Пример: Решить систему неравенств
х2³ 100х3;³ 0.
Преобразуем первое неравенство системы:
х3(х – 10)(х + 10) ³ 0, или х(х – 10)(х + 10) ³ 0
(т.к. множители в нечетных степенях можно заменять соответствующими множителями первой степени); с помощью метода интервалов (рис. 7) найдем решения последнего неравенства: -10£х £ 0, х ³ 10.
Рассмотрим второе неравенство системы; имеем
£ 0.
Находим (рис. 8) х £ -9; 3 < x < 15.
Объединив найденные решения, получим (рис. 9) х £ 0; х > 3.
Пример: Найти целочисленные решения системы неравенств:
х + y < 2,5,x – y > -3,
y –1 > 0.
Решение: Приведем систему к виду
x + y < 2,5,y – x < 3,
y > 1.
Складывая первое и второе неравенства, имеем y < 2, 75, а учитывая третье неравенство, найдем 1 < y < 2,75. В этом интервале содержится только одно целое число 2. При y = 2 из данной системы неравенств получим
х < 0,5,x > -1,
откуда –1 < x < 0,5. В этом интервале содержится только одно целое число 0.
Ответ: х = 0, y =2.
ГРАФИЧЕСКОЕ РЕШЕНИЕ НЕРАВЕНСТВ
Неравенства с одной или двумя переменными можно решать графически.
Неравенство с одной переменой можно записать так: f(x) > g(x), где f(x) и g(x) – выражения, содержащие переменную.
Построим в одной системе координат графики функций y =f(x) и у= g(x).
Решение неравенства есть множество значений переменой х, при которых график функций у=g(x), так как f(x)>g(x).Это показано на рисунках 1 и 2.точек плоскости, координаты которых удовлетворяют этому неравенству. Рассмотрим на примерах решение некоторых неравенств с двумя переменными.
Пример 1. Решить графически неравенствоx+у > 0.
Решение. Запишем неравенство в виде у> -х. Построим прямую у= -х. Координаты точек плоскости, которые лежат выше этой прямой, есть решение неравенства ( на рисунке 3 – заштрихованная область).