Смекни!
smekni.com

Курс лекций по теории вероятностей (стр. 2 из 20)


А теперь изобразим результат такого размещения в виде схемы, в которой вертикальные линии обозначают перегородки между ящиками, а кружки — находящиеся в ящиках шарики:

Мы видим результат размещения 9 шариков по 7 ящикам. Здесь 1-й ящик содержит 3 шарика, 2-й и 6-й ящики пусты, 3-й ящик содержит 1 шарик, и в 4-м и 5-м ящиках есть по 2 шарика. Переложим один шарик из первого ящика во второй и изобразим таким же образом еще один результат размещения:

И еще один:


Видим, что все размещения можно получить, меняя между собой шарики и перегородки, или расставляя k шариков на n-1+k месте. Число n-1+k получается так: у n ящиков есть ровно n+1 перегородка, считая крайние, или n-1 перегородка, если не считать крайние, которые двигать нельзя. И есть k шариков. Перебрав все возможные способы расставить k шариков на этих n-1+k местах (и ставя на оставшиеся места перегородки), переберем все нужные размещения.

Но способов расставить kшариков на n-1+k местах ровно

— это в точности число способов выбрать из n-1+k номеров мест k номеров мест (без учета порядка и без возвращения), на которые нужно поместить шарики. Заметим, что равенство
верно как по определению биномиальных коэффициентов или свойствам треугольника Паскаля, так и в силу того, что можно вместо выбора k мест для шариков выбирать n-1 место для перегородок ящиков, заполняя шариками оставшиеся места.

1.2 Основные понятия элементарной теории вероятностей

Предмет теории вероятностей. Статистическая устойчивость.

Теория вероятностей изучает закономерности, возникающие в случайных экспериментах (явлениях). Случайным называют эксперимент, результат которого нельзя предсказать заранее. Невозможность предсказать заранее — основное, что отличает случайное явление от детерминированного.

Не все случайные явления (эксперименты) можно изучать методами теории вероятностей, а лишь те, которые могут быть воспроизведены в одних и тех же условиях и обладают (непонятно как проверяемым заранее) свойством «статистической устойчивости : «если А— некоторое событие, могущее произойти или не произойти в результате эксперимента, то доля n(A)/n числа экспериментов, в которых данное событие произошло, имеет тенденцию стабилизироваться с ростом общего числа экспериментов n, приближаясь к некоторому числу P(A). Это число служит объективной характеристикой «степени возможности» событию А произойти.

В дальнейшем мы будем говорить лишь о случайных экспериментах, обладающих данными свойствами, а свойство статистической устойчивости докажем в утверждении, известном как закон больших чисел Я.Бернулли.

Пространство элементарных исходов. Операции над событиями

Определение 1. Пространством элементарных исходовΩ («омега») называется множество, содержащее все возможные результаты данного случайного эксперимента, из которых в эксперименте происходит ровно один. Элементы этого множества называют элементарными исходами и обозначают буквой ω («омега») с индексами или без.

Определение 2. Событиями мы будем называть подмножества множества Ω. Говорят, что в результате эксперимента произошло событие А ÍΩ, если в эксперименте произошел один из элементарных исходов, входящих в множество А.

Замечание 3. Вообще говоря, можно назвать событиями не обязательно все подмножества множества Ω, а лишь множества из некоторого набора подмножеств. О смысле такого ограничения мы поговорим позднее.

Пример 1. Один раз подбрасывается одна игральная кость (кубик). Самый разумный способ задать пространство элементарных исходов таков: Ω= {1,2,3,4,5,6}, элементарные исходы здесь соответствуют числу выпавших очков.

Примеры событий: A = {1,2} — выпало одно или два очка; A = {1,3,5} — выпало нечетное число очков.

Пример 2. Два раза подбрасывается одна игральная кость (кубик). Или, что, то же самое, один раз подбрасываются две игральные кости. Как мы увидим в дальнейшем, здесь самый разумный способ задать пространство элементарных исходов — считать результатом эксперимента упорядоченную пару чисел (i, j), в которой 1£ i, j £ 6и i - число очков выпавших первый раз, j– число очков, выпавших второй раз. Ω = {(i, j),где 1£ i, j £ 6}

Примеры событий:

A = {(1,1), (1,2), (1,3), (1,4), (1,5), (1,6)} — при первом подбрасывании выпало одно очко;

A = {(1,1),(2,2), (3,3), (4,4), (5,5), (6,6)} — при двух подбрасываниях выпало одинаковое число очков.

Пример 3. На поверхность стола бросается монета. Результатом эксперимента можно считать координату центра монеты (а если нам не безразличен угол поворота монеты, то можно добавить и величину этого угла). Пространство элементарных исходов — множество точек стола (во втором случае — множество пар {x, φ} , где x— координата точки стола и φÎ[0, 2π]— угол поворота). Число элементарных исходов такого эксперимента несчетно.

Пример 4. Монета подбрасывается до тех пор, пока не выпадет вверх гербом. Пространство элементарных исходов состоит из бесконечного, но счетного числа исходов:

Ω = {г, рг, ррг, рррг, ррррг, рррррг, …} , где ри г обозначают выпадение решки и герба при одном подбрасывании, соответственно.

Пример 5. Приведем пример неправильно выбранного пространства элементарных событий. Пусть при бросания игральной кости Ч = {четное число очков}, Т = {число очков, кратное трем}. Тогда Ω= {Ч, Т, 1, 5} составляет все исходы эксперимента, однако исходы Ч и Т могут наступать одновременно.

Определение 3.

1. Достоверным называется событие, которое обязательно происходит в результате эксперимента, то есть единственное событие, включающее все без исключения элементарные исходы — событие Ω.

2. Невозможным называется событие которое не может произойти в результате эксперимента, то есть событие, не содержащее ни одного элементарного исхода («пустое множество» Æ). Заметим, что всегда ÆÎΩ.

Определение 4. Пусть АиВ— события.

1. Объединением АUВсобытий АиВназывается событие, состоящее в том, что произошло либо А, либо В, либо оба события одновременно. На языке теории множеств АUВесть множество, содержащее как элементарные исходы, входящие в А, так и элементарные исходы, входящие в В.

2. ПересечениемА ∩В событий АиВназывается событие, состоящее в том, что произошли оба события АиВодновременно. То есть АВ есть множество, содержащее элементарные исходы, входящие одновременно в Аи в В.

3. ДополнениемА \ В события АдоВ называется событие, состоящее в том, что произошло событие А, но не произошло В. То есть А \ В есть множество, содержащее элементарные исходы, входящие в А, но не входящие в В.

4. Противоположным (или дополнительным) к событию А называется событие

, состоящее в том, что событие А в результате эксперимента не произошло. Иначе говоря,
есть множество, содержащее элементарные исходы, не входящие в А.

Определение 5.

1. События АиВназываются несовместными, если АВ = Æ.

2. События А1, А2 , … Аn называются попарнонесовместными, если для любых ij, 1 £i,j£n, события Аiи Аj несовместны.

3. Говорят, что событие А влечет событие В, и пишут АÍВ, если всегда, как только происходит событие А, происходит и событие В. На языке теории множеств это означает, что любой элементарный исход, входящий в А, одновременно входит и в событие В.

Вероятность на дискретном пространстве элементарных исходов

Предположим, что мы имеем дело с дискретным пространством элементарных исходов, то есть пространством, состоящим из конечного или счетного числа элементов:

Ω = {ω1, ω2 , … ωn , … }.

Определение 6. Поставим каждому элементарному исходу ωiÎΩ в соответствие число pi ) Î [0,1]так, что


Назовем число pi)вероятностью элементарного исхода ωi. Вероятностью события А Í Ω называется число

равное сумме вероятностей элементарных исходов, входящих в множество А.

Замечание 4. Позднее, познакомившись с аксиоматикой теории вероятностей, мы зададим вероятности событий непосредственно, а не через вероятности элементарных исходов. Тем более, что сложением вероятностей элементарных исходов можно получить лишь вероятность события, состоящего не более чем из счетного числа элементарных исходов (иначе само понятие суммирования не определено). Но на дискретном пространстве элементарных исходов определить вероятности событий так, как это сделано в определении 6, всегда возможно.