Смекни!
smekni.com

Шпаргалка по Высшей математике 3 (стр. 12 из 21)

Находим производные. Они равны соответственно:

Тогда
=500 + 0,0817 · 8 + 0,397 · (-17) + + 0,0833 · 6 = 498,89. Непосредственное вычисление дает
= 494

29. Экстремум функции двух переменных.

Определение. Если для функции z = f(x, y), определенной в некоторой области, в некоторой окрестности точки М00, у0) верно неравенство

то точка М0 называется точкой максимума.

Определение. Если для функции z = f(x, y), определенной в некоторой области, в некоторой окрестности точки М00, у0) верно неравенство

то точка М0 называется точкой минимума.

Теорема. (Необходимые условия экстремума).

Если функция f(x,y) в точке (х0, у0) имеет экстремум, то в этой точке либо обе ее частные производные первого порядка равны нулю

, либо хотя бы одна из них не существует.

Эту точку (х0, у0) будем называть критической точкой.

Теорема. (Достаточные условия экстремума).

Пусть в окрестности критической точки (х0, у0) функция f(x, y) имеет непрерывные частные производные до второго порядка включительно. Рассмотрим выражение:

1) Если D(x0, y0) > 0, то в точке (х0, у0) функция f(x, y) имеет экстремум, если

- максимум, если
- минимум.

2) Если D(x0, y0) < 0, то в точке (х0, у0) функция f(x, y) не имеет экстремума

В случае, если D = 0, вывод о наличии экстремума сделать нельзя.

Условный экстремум.

Условный экстремум находится, когда переменные х и у, входящие в функцию u = f( x, y), не являются независимыми, т.е. существует некоторое соотношение

j(х, у) = 0, которое называется уравнением связи.

Тогда из переменных х и у только одна будет независимой, т.к. другая может быть выражена через нее из уравнения связи.

Тогда u = f(x, y(x)).

В точках экстремума:

=0 (1)

Кроме того:

(2)

Умножим равенство (2) на число l и сложим с равенством (1).

Для выполнения этого условия во всех точках найдем неопределенный коэффициент l так, чтобы выполнялась система трех уравнений:

Полученная система уравнений является необходимыми условиями условного экстремума. Однако это условие не является достаточным. Поэтому при нахождении критических точек требуется их дополнительное исследование на экстремум.

Выражение u = f(x, y) + lj(x, y) называется функцией Лагранжа.

Пример. Найти экстремум функции f(x, y) = xy, если уравнение связи:

2x + 3y – 5 = 0

Таким образом, функция имеет экстремум в точке

.

Использование функции Лагранжа для нахождения точек экстремума функции называется также методом множителей Лагранжа.

30. Понятие неопределенного интеграла. Свойства неопределенного интеграла.

В дифференциальном исчислении решается задача: по данной функции ƒ(х) найти ее производную (или дифференциал). Интегральное исчисление решает обратную задачу: найти функцию F(x), зная ее производную F'(x)=ƒ(х) (или дифференциал). Искомую функцию F(x) называют первообразной функции ƒ(х) .

Функция F(x) называется первообразной функции ƒ(х) на интервале (а; b), если для любого х є (а;b) выполняется равенство

F'(x)=ƒ(x) (или dF(x)=ƒ(x)dx).

Например, первообразной функции у=х2, х є R, является функция

, так как

Очевидно, что первообразными Будут также любые функции

где С - постоянная, поскольку

Tеоpeмa 29. 1. Если функция F(x) является первообразной функции ƒ(х) на (а;b), то множество всех первообразных для ƒ(х) задается формулой F(x)+С, где С - постоянное число.

▲Функция F(x)+С является первообразной ƒ(х).

Действительно, (F(x)+C)'=F'(x)=ƒ(x).

Пусть Ф(х) - некоторая другая, отличная от F(x), первообразная функции ƒ(х) , т. е. Ф'(x)=ƒ(х). Тогда для любого х є (а;b) имеем

А это означает, что

Ф(x)-F(x)=C,

где С - постоянное число. Следовательно, Ф(х)=F(x)+С.

Множество всех пepвoобpaзныx функций F(x)+С для ƒ(х) называется неопределенным интегралом от функции ƒ(х) и обозначается символом ∫ ƒ(х) dx.

Таким образом, по определению

∫ƒ(x)dx= F(x)+C.

Здесь ƒ(х) называется подынтегральнoй функцией, ƒ(x)dx — подынтегральным выражением, х - переменной интегрирования, ∫ - знаком неопределенного интеграла.

Операция нахождения неопределенного интеграла от функции называется интегрированием этой функции.

Геометрически неопределенный интеграл представляет собой семейство «параллельных» кривых у=F(x)+C (каждому числовому значению С соответствует определенная кривая семейства) (см. рис. 166). График каждой первообразной (кривой) называется интегральной кривой.

Для всякой ли функции существует неопределенный интеграл?

Имеет место теорема, утверждающая, что «всякая непрерывная на (а;b) функция имеет на этом промежутке первообразную», а следoвaтельно, и неопределенный интеграл.

· Свойства неопределенного интеграла

Отметим ряд свойств неопределенного интеграла, вытекающих из его определения.

1. Дифференциал от неопределенного интеграла равен подынтегральному выражению, а производная неопределенного интеграла равна подынтегральной функции:

d(ƒ(x)dx)=ƒ(x)dх, (ƒ(x)dx)'=ƒ(х).

Дeйcтвительнo, d(∫ƒ(х) dx)=d(F(x)+С)=dF(x)+d(C)=F'(x) dx =ƒ(х) dx

(ƒ (x) dx)'=(F(x)+C)'=F'(x)+0 =ƒ (x).

Блaгoдapя этому свойству правильность интегрирования проверяется дифференцированием. Например, равенство

∫(3x2+ 4) dx=хз+4х+С

верно, так как (х3+4х+С)'=3x2+4.

2. Hеопpедeлeнный интеграл от диффepeнциaла некоторой функции равен сумме этой функции и произвольной постоянной:

∫dF(x)= F(x)+C.

Действительно,

3. Постоянный множитель можно выносить за знак интеграла:

α ≠ 0 - постоянная.

Действительно,

(положили С1/а=С. )

4. Неопределенный интеграл от aлгeбpaическoй суммы конечного числа непрерывных функций равен aлгебpaичecкoй сумме интегралов от слагаемых функций:

Пусть F'(x)=ƒ(х) и G'(x)=g(x). Тогда

где С1±С2=С.

5. (Инвариантность формулы интегрирования).

Если

, где u=φ(х) - произвольная функция, имеющая непрерывную производную.

Пусть х - независимая переменная, ƒ(х) - непрерывная функция и F(x) - ее пepвoобpaзнaя. Тогда