Смекни!
smekni.com

Шпаргалка по Высшей математике 3 (стр. 16 из 21)

Каждая из написанных сумм является интегральной соответственно для отрезков [а; b], [а; с] и [с; b]. Переходя к пределу в последнем равенстве при n → ∞ (λ → 0), получим равенство (3).

Свойство 4 справедливо при любом расположении точек а, b, с (считаем, что функция ƒ (х) интегрируема на большем из получающихся отрезков).

Так, например, если а < b < с, то

Отсюда

(использованы свойства 4 и 3).

5. «Теорема о среднем». Если функция ƒ(х) непрерывна на отрезке [а; b], то существует тонка с є [а; b] такая, что

По формуле Ньютона-Лейбница имеем

где F'(x) = ƒ(х). Применяя к разности F(b)-F(a) теорему Лагранжа (теорему о конечном приращении функции), получим

F(b)-F(a) = F'(c)•(b-а) = ƒ(с)•(b-а).

Число

называется средним значением функции ƒ(х) на отрезке [а; b].


6. Если функция ƒ (х) сохраняет знак на отрезке [а; b], где а < b, то интеграл

имеет тот же знак, что и функция. Так, если ƒ(х)≥0 на отрезке [а; b], то

По «теореме о среднем» (свойство 5)

где с є [а; b]. А так как ƒ(х) ≥ 0 для всех х Î [а; b], то и

ƒ(с)≥0, b-а>0.

Поэтому ƒ(с)•(b-а) ≥ 0, т. е.

7. Неравенство между непрерывными функциями на отрезке [а; b], (a<b) можно интегрировать. Так, если ƒ1(x)≤ƒ2(х) при х є [а;b], то

Так как ƒ2(х)-ƒ1(x)≥0, то при а < b, согласно свойству 6, имеем

Или, согласно свойству 2,

Отметим,что дифференцировать неравенства нельзя.

8. Оценка интеграла. Если m и М — соответственно наименьшее и наибольшее значения функции у = ƒ (х) на отрезке [а; b], (а < b), то

4.

Так как для любого х є [а;b] имеем m≤ƒ(х)≤М, то, согласно свойству 7, имеем

Применяяк крайним интегралам свойство 5, получаем

9. Модуль определенного интеграла не превосходит интеграла от модуля подынтегральной функции:

▼Применяя свойство 7 к очевидным неравенствам -|ƒ(х)|≤ƒ(х)≤|ƒ(х)|, получаем

Отсюда следует, что

10. Производная определенного интеграла по переменному верхнему пределу равна подынтегральной функции, в которой переменная интегрирования заменена этим пределом, т. е.

По формуле Ньютона-Лейбница имеем:

Следовательно,

Это означает, что определенный интеграл с переменным верхним пределом есть одна из первообразных подынтегральной функции.

38. Замена переменной и интегрирование по частям в определенном интеграле.

Пусть для вычисления интеграла

от непрерывной функции

сделана подстановка х = φ(t).

Теорема 39.1. Если:

1) функция х = φ(t) и ее производная х' = φ'(t) непрерывны при t є [а;β];

2) множеством значений функции х = φ(t) при t є [а,β] является отрезок [а; b];

3) φ(а)=а и φ(β)=b.

то

1.

Пусть F(x) есть первообразная для ƒ(х) на отрезке [а;b]. Тогда по формуле Ньютона-Лейбница

Так как (F(φ(t))' = f(φ(t)) - φ'(t), то F(φ(t)) является первообразной для функции f(φ(t)) -φ'(t), t Î [а;β]. Поэтому по формуле Ньютона—Лейбница имеем

Формула 1) называется формулой замены переменной в определенном интеграле. Отметим, что:

1) при вычислении определенного интеграла методом подстановки возвращаться к старой переменной не требуется;

2) часто вместо подстановки х = φ(t) применяют подстановку t = g(x);

3) не следует забывать менять пределы интегрирования при замене переменных!

Пример. Вычислить

Решение: Положим х = 2 sin t, тогда dx = 2 cos t dt. Если х=0, то t = 0; если x = 2, то t =

. Поэтому

Интегрирование по частям

Теорема. Если функции u = u(х) и v = v(x) имеют непрерывные производные на отрезке [а; b], то имеет место формула

2.

На отрезке [а; b] имеет место равенство (uv)' = u'v+uv'. Следовательно, функция uv есть первообразная для непрерывной функции u'v+uv'. Тогда по формуле Ньютона-Лейбница имеем:

Следовательно,

Формула (.2) называется формулой интегрирования по частям для определенного интеграла.

Пример. Вычислить

Решение: Положим

Применяя формулу 2), получаем

39. Дифференциальные уравнения первого порядка. Общее и частное решения.

Обыкновенным дифференциальным уравнением называется уравнение, связывающее между собой значения независимой переменной x, неизвестной функции y = f(x) и её производных (или дифференциалов):

; (1)

(все три переменные x, y, F - действительны).
Опр. Порядком уравнения называется максимальный порядок n входящей в него производной (или дифференциала).
Пример: y(4)y + x = 0 - уравнение четвёртого порядка.

Уравнение вида F(x, y, y/) = 0 называется уравнением первого порядка.

В простейших случаях оно может быть разрешено относительно у/ = f(x,y).

Общее решение имеет вид у = j(х,С), где С - константа.

Геометрически общее решение представляет собой семейство интегральных кривых.

Интегральные кривые обладают тем свойством, что все касательные в точке М(х,у) имеют наклон tga = f ’(x,y).

Если задать точку М0(х0,у0), через которую должна проходить интегральная кривая, то это требование называется начальным условием y = у0, х = х0 и тогда

у0 = j(х0,С0).

Определяется С - константа; в результате получаем частное интегральное решение у = j(х,С0).

В этом состоит задача Коши.

Опр. Частным решением уравнения (1) на интервале (a, b) (конечном или бесконечном) называется любая n раз дифференцируемая функция

, удовлетворяющая этому уравнению, т.е. обращающая уравнение на этом интервале в тождество.
Так, функция y(x) = ex + x обращает уравнение : y(4)y + x = 0 в тождество на всей числовой оси (y(4)(x) = ex; ex –(ex +x) + x = 0), т.е. является частным решением этого уравнения. Любое уравнение порядка
имеет множество частных решений (частным решением приведённого уравнения является и функция y(x) = sin(x) + x). Процедуру решения дифференциального уравнения часто называют интегрированием уравнения, при этом интегрировать приходится в общем случае ровно n раз, и при каждом интегрировании в решение входит очередная произвольная постоянная.
Опр. Общим решением (общим интегралом) уравнения (1) называется такое соотношение

; (2)

что: 1. Любое решение (2)

относительно y (для набора постоянных C1, C2, …, Cn из некоторой области n-мерного пространства) - частное решение уравнения (1);
2. Любое частное решение уравнения (1) может быть получено из (2) при некотором наборе постоянных C1, C2, …, Cn.
Мы будем в основном рассматривать дифференциальные уравнения в форме, разрешённой относительно старшей производной: