Смекни!
smekni.com

Синтез и свойства 4-замещенных 5Н-123-дитиазолов (стр. 10 из 26)

Схема 121

Распределение валентностей и зон проводимости в бис-1,2,3-дитиазолильном радикале 89 вычислена на основе теории Хюккеля. Было найдено, что энергия образования связи между двумя радикалами (ca. 0.4 эВ) существенно меньше, чем найденные значения для других димеров радикалов, что объясняется слабостью междимерных взаимодействий.[37]


Распределение спиновой плотности в радикалах 89 и 254 было вычислено с помощью метода UB3LYP/6-31G*.[101] Существенная делокализация спиновой плотности была найдена в конденсированном с бензолом 1,2,3-дитиазоле 254. В дополнение к полярным резонансным формам в молекуле существуют неполярные резонансные формы аллильного типа, которые образуются благодаря распространению спиновой плотности в бензольное кольцо. Показано, что энергии диспропорционирования радикалов 89 и 254, вычисленные тем же методом, количественно коррелируют с данными по проводимости этих радикалов. Обогащенные π-системы, в которых есть N-S-S группа, такие как дитиазол 89, обладают низкими энергиями диспропорционирования и, вследствии этого, высокой проводимостью.[102]

Выполнены вычисления связей кристаллических структур 82, 83 и 251 с помощью расширенной теории Хюккеля (extended Hückel theory, EHT).[15,17] Они показали, что рассеивание кривых вдоль направления π-слоев возникает из ВЗМО радикалов в ячейке проводящих связей молекулярного металла, хотя ни один из материалов, строго говоря, не является металлом; тем не менее, кривые распределения позволяют оценить степень межмолекулярного взаимодействия вдоль и поперек направлений π-слоев.

1.4 Биологическая активность и практическое применение 1,2,3-дитиазолов

N-Арилимино-1,2,3-дитиазолы 117 показали существенную антибактериальную активность против грам-положительных бактерий.[57, 103] Незамещенное ароматическое соединение 117 (R = H) и его о-метоксипроизводное оказались наиболее активными среди протестированных соединений. Для четырех видов грибка минимальные фунгицидные концентрации 1,2,3-дитиазолов 117 и 255 были не более чем в два раза выше, чем минимальная подавляющая концентрация (MIC), что доказывает высокую фунгицидную активность этих соединений.[103] Показано, что ароматическая часть молекулы не оказывает существенного влияния на антимикробную активность, которая, очевидно, более всего зависит от 1,2,3-дитиазольного цикла, действуя как мощный ингибитор для некоторых энзимов, похожих на серин протеазы.

In vitro противогрибковая активность была определена для дрожжевых микроорганизмов типа Candida albicans ATCC 10231, Candida utilis ATCC 9950, Candida lipolytica CBS 6124, Saccharomyces cerevisiae ATCC 26785 и Pichia stipitis CBS 5776 и плесени типа Aspergillus niger L32 and Penicillium sp.[104, 105] Все 1,2,3-дитиазолы показали существенную противогрибковую активность против исследованных типов дрожжей. Соединения 260-264 дали наивысшие значения MIC от 10 до 50 μg/mL. Эффективность этих веществ сравнима с результатами для амфотерицина B, который используется как эталонное соединение при определении ингибирования роста грибков.

Противораковая активность 1,2,3-дитиазолов 256-264 была исследована in vitro на линиях миелоидной лейкемии человека K562 и L1210 лейкемии мышей и сравнена с аналогичным действием натурального продукта дистамицина А. Все имины 256-264 оказались активными при концентрации от 3 до 10 μM и имеют активность, сравнимую с активностью дистамицина А.

Гетероциклический π-донор – бензо-бис-1,2,3-дитиазол 55 был предложен в качестве донорной компоненты для проводников с переносом заряда.[39]

В качестве привлекательной альтернативы для традиционных синтетических проводников - комплексов с переносом заряда - рассматриваются нейтральные гетероциклические радикалы, в том числе производные 1,2,3-дитиазолов. Проводимость в этих материалах обеспечивается за счет множества слоев π-радикалов, вместо решетки атомов в традиционных металлах. Несколько примеров дитиазолильных радикалов, таких как (тиадиазоло)дитиазолопиразинил 89,[37] хлорбис(дитиазоло)пиридинилы 83,[9] перхлоризотиазоло-1,2,3-дитиазолил 84,[9] бис[1,2,3]дитиазолопиридинилы 250[16] и замещенные бис-1,2,3-дитиазолопиридинилы 82,[15] были получены Окли и соавторами.

Заключение

В заключение следует отметить, что 1,2,3-дитиазолы являются, пожалуй, одним из наиболее изученных классов пятичленных сероазотсодержащих гетероциклов. Конденсированные с бензолом дитиазолы известны более 80 лет в основном в виде солей Герца. Существенный толчок к синтезу конденсированных 1,2,3-дитиазолов был дан в 1970 г., когда было показано, что легкодоступные оксимы могут быть перспективными исходными соединениями для этого класса гетероциклов. Этот подход интенсивно развивался в течение последних 15 лет Рисом и его соавторами.

Значительный интерес к неконденсированным 1,2,3-дитиазолам объясняется доступностью и высокой и разнообразной реакционной способностью хлорида 4,5-дихлор-1,2,3-дитиазолия, полученной впервые Аппелем и сотрудниками в 1985 г. К настоящему времени известно более 100 ссылок на работы по соли Аппеля, и на ее основе синтезировано более 700 новых соединений. Однако следует отметить, что другие 5-замещенные аналоги соли Аппеля практически не изучены.

В последнее время большое внимание проявляется к получению и исследованию свойств органических радикалов, включающих в себя 1,2,3-дитиазольный фрагмент. Это связано с разнообразными возможностями применения такого рода систем в технике для создания органических магнетиков, проводников и молекулярных переключателей.

Таким образом, дальнейшее изучение свойств и возможностей прикладного использования 1,2,3-дитиазолов является перспективной областью химии гетероциклических соединений.


2. Обсуждение результатов

В настоящем разделе диссертации приведен анализ результатов, полученных при исследовании реакции этаноноксимов с монохлоридом серы, приводящей к 4-замещенным солям 1,2,3-дитиазолия, образующим различные производные при действии на них нуклеофильных реагентов, а также изучение свойств полученных 1,2,3-дитиазолов.

В процессе разработки методов синтеза 4-замещенных 1,2,3-дитиазолов важнейшим этапом стал поиск оптимальных условий получения солей 1,2,3-дитиазолия – предшественников этих соединений. В литературе известны единичные примеры получения 4-замещенных моноциклических солей 1,2,3-дитиазолия 1 обработкой монохлоридом серы соединений, содержащих С-N-фрагмент: -фторсульфовиниламинов 2 [12] или этаноноксимов 3 [10, 11], причем в обоих случаях соли 1,2,3-дитиазолия не выделяются, а вводятся в последующие реакции in situ (Схема 1). Однако, существенный недостаток первого метода заключается в том, что виниламины 2 являются неустойчивыми и труднодоступными веществами. Поэтому мы остановили свой выбор на этаноноксимах 3, легкодоступных потенциальных синтонах для получения 4-замещенных солей 1,2,3-дитиазолия 1.

Схема 1


2.1 Разработка методов синтеза 4-замещенных 5Н-1,2,3-дитиазолов

2.1.1 Разработка метода синтеза 4-фенил-5Н-1,2,3-дитиазол-5-она 4а

На примере ацетофеноноксима 3а мы исследовали возможность синтеза 4-замещенных 1,2,3-дитиазолий хлоридов 1 и на их основе 4-замещенных 5H-1,2,3-дитиазол-5-онов 4. Оказалось, что кетон 4а в условиях реакции, описанных в литературе [11, 12] (обработка оксима 3а монохлоридом серы или смесью монохлорида серы и пиридина в хлористом метилене с дальнейшим гидролизом водой) действительно образуется с низкими выходами 26% и 22%, соответственно. Однако, наши попытки ввести в реакцию в этих условиях другие этаноноксимы 3 (R = Me, 2-pyridyl, EtO2C, 2-thienyl) оказались безуспешными, обнаружить образование 1,2,3-дитиазол-5-онов 4 нам не удалось. Таким образом, описанные в литературе способы получения производных 1,2,3-дитиазолов не являются общими и эффективными.

Исходя из вышеизложенных результатов мы решили систематически изучить реакции этаноноксимов 3 с монохлоридом серы с целью разработки удобного и эффективного метода получения 4-замещенных солей 1,2,3-дитиазолия и их производных - 1,2,3-дитиазол-5-онов 4.

Исследование реакции 3а с S2Cl2 и пиридином в CH2Cl2 показало, что через 15 минут образуется осадок красного цвета, который был отфильтрован. Мы предположили, что в этом осадке содержится соль 1а. Однако, в масс-спектрах выделенного осадка наблюдались лишь пики фрагментов молекулярной серы, S8, очевидно также содержащейся в этом осадке в значительных количествах. Попытки снять спектр ЯМР 1Н выделенного продукта в DMSO-d6 также успеха не имели, мы наблюдали ряд сигналов в области ароматических протонов слабой интенсивности, не соответствующих одной фенильной группе, по-видимому, соль 1а разлагается в DMSO-d6.

Реакция выделенного осадка с водой привела к кетону 4а, что доказывало образование соли 1а (Схема 2). Однако, перекристаллизовать и выделить соль 1а в чистом виде нам не удалось. При хранении соли 1а под аргоном при 0 оС, очевидно, происходит ее разложение, поскольку при введении в реакцию с водой образцов осадка по мере увеличения срока его хранения выходы кетона 4а снижаются. Результаты реакций представлены в Таблице 1.

Таблица 1. Изменение выхода продукта 4a в реакции осадка, выделенного из реакции 3а и S2Cl2 с течением времени его хранения.

Срок дней хранения 1а (дни) 0 1 6
Выход кетона 4а (%) 26 15 0

Таким образом, мы показали, что хлорид 5-хлор-4-фенил-1,2,3-дитиазолия 1а, образование которого было подтверждено его реакцией с водой, является неустойчивым, выделить его в индивидуальном виде и охарактеризовать нам не удалось, поэтому мы решили вводить 1a и другие соли 1 в последующие превращения in situ. В качестве модельного превращения была выбрана реакция ацетофеноноксима 3a и S2Cl2 с последующей обработкой кислородсодержащим нуклеофилом, которая приводит к кетону 4a. Основные результаты исследования этой реакции (Схема 2) представлены в Таблице 2.