Смекни!
smekni.com

Синтез и свойства 4-замещенных 5Н-123-дитиазолов (стр. 9 из 26)

1.3.3 Масс-спектрометрия

Присутствие 1,2,3-дитиазольного цикла зачастую подтверждается с помощью масс-спектрометрии. Так, смесь изомеров 242 содержит фрагментные ионы m/z 137 (C2ClNS2) хлорированного цикла, 125 (CClNS2), 102 (C2NS2) - самого 1,2,3-дитиазольного кольца, [93] (CClNS) - частицы Cl-C=N-S, 70 (C2NS) и 64 (S2).[31] Эти выводы были подтверждены данными масс-спектрометрии высокого разрешения (HRMS), с помощью которых, кроме вышеперечисленных, также смогли быть идентифицированы фрагментные ионы m/z 120 (C3Cl2N) и 85 (C3ClN) - заместителей дитиазольного цикла. Фрагментация молекулы дитиазола 243 протекает так легко, что интенсивный пик молекулярного иона, m/z 287, может быть получен только с помощью метода FAB (Fast Atom Bombardment) масс-спектрометрии.[31]

1.3.4УФ- и ИК-спектроскопия

Структурно близкие нафтодитиазолоны 80 и 81 формально являются 14π гетероароматическими системами с аналогичными возможностями распределения электронной плотности.[48] Существенное различие в цвете и электронных спектрах для дитиазола 80 (λmax 461 нм, log ε 4.03) и дитиазола 81 (λmax 602 нм, log ε 3.63) объясняется различием строения угловой структуры 80 и более высокоэнергетической линейной структуры 81 (Схема 118), как это ранее было показано для похожих карбоциклических систем типа фенантрена, антрацена и их азапроизводных.

Схема 118

Интенсивные π-π-переходы в бис-дитиазоле 53 лежат в более длинноволновой области (622 нм),[14] чем соответствующие максимумы абсорбции в дитиазолах 56 (522 нм) и 43 (565 нм).[96]

4-Хлор-1,2,3-дитиазолы 36 и 42 показывают сильную абсорбцию в УФ области при λmax 423-431 нм (log ε 3.8-4.0) и более слабую абсорбцию при λmax 330 нм (log ε 3.2-3.3).[31]

УФ-спектр конденсированного дитиазола 244 (λmax 412 нм, ε = 23928) существенным образом отличается от УФ-спектра хлорпроизводного 61 (λmax 546 нм, ε = 2618).[43] Очевидно, морфолиновая группа в дитиазоле 244 разрушает полосу, отвечающую за перенос заряда между двумя циклами за счет сопряжения амино- и нитрильной групп. В УФ-спектре циклопентадитиазола 245 проявляется широкая полоса абсорбции в близкой к ИК области (λmax 700 нм, ε = 864).

5-5-6-Конденсированные дитиазолы 246, 5-6-6-6-циклы 247 и 248 показывают сильные полосы поглощения (log ε = 3.9-4.2) при 570-635 нм, в то время как линейная 5-6-6-6 система 249 поглощает в более коротковолновой области 533 нм (log ε = 4.7). Причем отличие поглощения для π→π* переходов нефторированных гетероциклов от фторированных аналогов невелико. Дополнительно 5-6-6-6 полициклические системы 247-249 демонстрируют флуоресценцию в районе ca. 660-680 нм.[99]


Полосу поглощения 1120 см-1 в ИК-спектре трициклического дитиазола 66 приписывают к N-S колебаниям цикла.[100] ИК-спектр 4-хлор-1,2,3-дитиазол-5-тиона 36 показывает интенсивные полосы поглощения при 1041, 1029 и 1013 см-1 в области поглощения симметричных и асимметричных колебаний сульфиновой группы.[31]

1.3.5 Электрохимические методы

Для более глубокого выяснения окислительно-восстановительных свойств 1,2,3-дитиазольного кольца было исследовано электрохимическое поведение ряда представителей этого класса соединений. Например, циклическая вольтамперометрия бис(дитиазола) 56 в ацетонитриле на платиновом электроде в 0.1 M n-Bu4NPF6 в качестве вспомогательного электролита выявила волну обратимого окисления с E1/2(ox) = 0.93 В и вторую волну необратимого окисления с пиком потенциала на аноде Epa = 1.5 В.[38] Попытки подавить необратимость процесса окисления [56]+ до [56]2+ варьированием частоты развертки электрического напряжения и концентрации субстрата оказались безуспешными. Восстановление соединения 56 сопровождается появлением единственной, широкой и строго необратимой волны с потенциалом катодного пика Epc = -0.95 В. Данные по потенциалу полуволны E1/2(ox) первой и второй стадии окисления, а также потенциалов катодного пика Epc для процесса восстановления известных 1,2,3-дитиазолов приведены в Таблице 4.

Таблица 4 Электрохимические свойства и данные ЭПР спектров 1,2,3-дитиазолов.

Структура E1/2(0/+), В E1/2(+/2+), В Epc(0/-), В g-фактор aN, mT Литература
(43) 0.80 1.25 -0.95 2.0117 0.096 24
(26) 1.36 1.60 -0.91* 2.0102 0.236 24
(89) 1.14 - 0.15 2.009 0.514 37
(83a) 0.005 1.415 -0.835 2.0083 0.310 15
(250a) -0.130 1.294 -0.952* 2.0082 0.317 15
(250b) - - - 2.0082 0.318 17
(250c) - - - 2.0082 0.310 97
(82a) -0.136 1.278 -0.94 2.0084 0.317 15
(82b) -0.104 1.305 -0.956 2.0086 0.320 15
(56) 0.93 1.5* -0.95 2.0114 0.201 38
(53) 0.41 0.66 -1.06 2.0106 0.235 14
(55) 0.61 1.10 -0.98 2.0117 0.161 39
(84) 0.565 - -0.389* 2.00875 0.498 9
(85) 0.207 - -0.91* 2.0081 0.748 36
(251) 0.81 1.37 -0.96 2.0117 0.143 39
(252) -0.029 2.0087 0.313; 0.267 41
(11d) -0.118 1.295 -0.970 2.0086 0.317; 0.06 95
(11b) -0.104 1.305 -0.956 2.0086 0.32; 0.06 95

* Необратимые процессы

1.3.6 ЭПР-спектроскопия

Раствор катион-радикала 56 в жидком SO2 показывает очень сильный и устойчивый сигнал ЭПР в виде 1:2:3:2:1 квинтета, который подтверждает, что спиновая плотность полностью делокализована на обоих атомах азота дитиазольных циклов.[38] Воздействие спин-орбитального сопряжения на атомах серы на g-фактор гораздо более выражено в трициклическом бис-дитиазольном катион-радикале 56 (g = 2.0114), чем в простых монофункциональных дитиазолилах или в бензо-1,2,3-дитиазолиле 253 (g = 2.008). Аналогично, более исчерпывающая делокализация спиновой плотности в катион-радикале 56 относительно простых 1,2,3-дитиазолилов приводит к меньшим константам тонкого взаимодействия на атоме азота (aN = 0.201 mT). Также наблюдается дополнительное расщепление под действием двух протонов с aN = 0.079 and 0.048 mT в катион-радикале 251.[14] ЭПР-спектр соединения 89 является значительно более сложным, но расчетные спектральные симуляции показывают возможность воздействия всех пяти атомов азота на тонкое расщепление спектральных линий. Спиновая плотность частично уходит из позиции 5 и перераспределяется не только по атому азота, присоединенному к положению 4 в 1,2,3-дитиазольном цикле, но и по всем другим атомам азота тиадиазолопиразинового лиганда. Результатом этой реорганизации является отсутствие димеризации радикала 89 путем образования С-С связи.[37]

В дополнение к ожидаемому триплету (aN = 0.498 mT), возникающему из тонкого расщепления от дитиазольного атома азота радикала 84, спектр ЭПР содержит расщепление (aN = 0.135 mT) от изотиазольного атома азота, а также расщепление с меньшими константами от двух из трех атомов хлора, находящихся в молекуле, что является признаком существенной спиновой делокализации вне дитиазольного цикла.[9]

Значения g-факторов и aN констант известных 1,2,3-дитиазолильных радикалов представлены в Таблице 4.

1.3.7 Квантово-химические расчеты молекул 1,2,3-дитиазолов

Вычисления методом расчетов функциональной плотности (DFT) на уровне B3LYP/6-31G** тетратиадиазафульвалена 43 показали, что эти молекулы в основном состоянии скорее всего находятся в виде соединения 43а, чем в виде бирадикала 43b, что является результатом сильного взаимодействия на мостиковой С-С связи (Схема 119).[33]

Схема 119

Были выполнены вычисления электронной корреляции методом DFT для бензо-бис-дитиазола 254. Асимметрия пары двух монозанятых SOMO молекулярных орбиталей приводит при смешении с бензолом к гораздо более сильному расщеплению двух граничных орбиталей au и bg и, как следствие, к хиноидальному синглетному состоянию 254а. Дирадикальный синглет 254b должен иметь большую (на 0.72 эВ) энергию, чем основное состояние 254а (Схема 120).[38]

Схема 120

Вычисление взаимодействий пограничных молекулярных орбиталей (FMO) показали, что эффект высокой электроотрицательности N-N мостика не оказывает определяющего влияния на распределение электронной плотности в бис-1,2,3-дитиазоле 26; он стабилизирует основное синглетное состояние 26а относительно дирадикального триплетного состояния 26с путем понижения энергии верхней занятой молекулярной орбитали (ВЗМО) и поляризует две оккупированные π-связи в азиновом мостике. Распределение зарядов также показывает, что структура бис-1,2,3-дитиазола 26, связанного диазиновым мостиком, лучше подходит к ковалентной формуле 26а, чем к полярной формуле 26b (Схема 121).[24]