Смекни!
smekni.com

Синтез и свойства 4-замещенных 5Н-123-дитиазолов (стр. 11 из 26)

Схема 2.

Мы исследовали влияние различных оснований на ход реакции. Пиридин оказался наиболее эффективным основанием среди остальных исследованных азотсодержащих оснований (DABCO, Et3N) (таблица 2, оп. 5, 6, 7). Использование пиридина в качестве основания позволило существенно уменьшить избыток S2Cl2 (до 3-х эквивалентов) и время выдержки (до 15 мин.), но выход продукта 4а при этом оставался низким - 22% (таблица 2, оп. 5). Роль растворителя в этой реакции оказалась решающей. Замена хлористого метилена на ацетонитрил позволила уменьшить количество S2Cl2, необходимого для успешного протекания реакции, до теоретического (2 экв.), при этом выход кетона увеличился, достигнув максимального при проведении реакции при 0 оС. В качестве кислородсодержащего нуклеофила, необходимого для превращения соли 1а в кетон 4а, были исследованы вода (таблица 2, оп. 10), нитрат натрия (таблица 2, оп. 11), ранее использовавшийся для получения 1,2,3-дитиазол-5-онов [1] а также муравьиная кислота, применяющаяся для перевода солей 3-хлор-1,2-дитиолия в 1,2-дитиол-3-оны [106]. Использование муравьиной кислоты, ранее не применявшейся для синтеза 1,2,3-дитиазол-5-онов, позволило получить кетон 4a с самым высоким выходом - 58% (таблица 2, оп. 9).

2.1.2Синтез 4-замещенных 5Н-1,2,3-дитиазол-5-онов 4

Мы распространили найденные нами оптимальные для ацетофеноноксима 3а условия на ряд других этаноноксимов 1 и 1,2,3-дитиазол-5-оны 4 были выделены во всех случаях, с выходами от низких до умеренных (Схема 3).

Схема 3

В случае метильного и карбоксиэтильного производных выход продуктов 4g и 4h оказался низким из-за того, что эти вещества является легколетучими и улетают вместе с растворителем при упаривании растворов, даже при комнатной температуре при использовании таких низкокипящих растворителей, как хлористый метилен или эфир.

В реакциях оксимов 3b и 3f с монохлоридом серы и пиридином нам удалось выделить и охарактеризовать побочные продукты - 4,5-дигидро-1,2,7-тиадиазепины 5 (Схема 4), образование которых и объясняет невысокие выходы кетонов 4b и 4f.

Схема 4

Соединения 4a–f являются светло-желтыми кристаллическими веществами, а 4g,h – светло-желтыми маслами. Строение соединений 4 подтверждено данными элементного анализа и совокупностью спектральных данных. Масс-спектры кетонов 4 содержат пик молекулярного иона. ИК-спектры соединений 4 имеют интенсивную полосу поглощения в области 1650-1670 см-1, характерную для С=О – группы. Карбонильная группа дитиазолов 4 в спектрах ЯМР 13С характеризуются сигналом в области 188-190 м.д.

Строение соединений 5 установлено с помощью данных элементного анализа и совокупности спектральных данных. Масс-спектры тиадиазепинов 5 имеют пики молекулярных ионов и пики фрагментов молекул с отщеплением NS- и N2S-частиц. Этиленовый фрагмент тиадиазепинового цикла характеризуется синглетом протонов в спектрах ЯМР 1H в области 3.4-3.8 м.д. и синглетом ядер углерода в области 34 м.д в спектрах ЯМР 13С.


2.1.3 Синтез 4-замещенных 5H-1,2,3-дитиазол-5-тионов 6

Другим типом 1,2,3-дитиазолов, который мог быть получен из солей 1,2,3-дитиазолия 1 являются тионы 6. Единственный представитель этих производных - 4-хлор-1,2,3-дитиазол-5-тион, ранее был получен обработкой хлорида 4,5-дихлор-1,2,3-дитиазолия 1k (соли Аппеля) сероводородом (выход 69%) или 2-цианотиоацетамидом (выход 89%) (см. Схему 21 литературного обзора).[1, 2] Оба метода нас не устраивали, первый - ввиду высокой токсичности сероводорода, второй – из-за высокой цены реагента.

Мы решили использовать в качестве серосодержащего нуклеофила тиоацетамид, который ранее был успешно применен в нашей лаборатории для получения 1,2-дитиол-3-тионов из солей 1,2-дитиолия [107]. Мы проверили эту возможность путем обработки реакционной смеси, полученной из ацетофеноноксима 3a и S2Cl2, суспензией тиоацетамида в ацетонитриле. Оказалось, что в этом случае тион 6a образуется с высоким выходом 73% (Схема 5). Эти условия были распространены на другие этаноноксимы 3 и 1,2,3-дитиазол-5-тионы 6 во всех случаях были выделены, как правило, с умеренными выходами (Схема 5).

Схема 5

Соль Аппеля 1k была введена в реакцию с тиоацетамидом в ацетонитриле и 4-хлор-5H-1,2,3-дитиазол-5-тион 6k был получен c выходом 93%, более высоким, чем описано в литературе [1, 2] (Схема 6).

Схема 6

Предполагаемая последовательность превращений при образовании тионов 6 из солей 1 представлена на Схеме 7. Образование тиона, как мы предполагаем, идет через присоединение молекулы тиоацетамида в пятое положении цикла, с последующим отщеплением молекул хлористого водорода и ацетонитрила.

Схема 7

Таким образом, нами разработан новый, удобный в препаративном отношении метод синтеза 4-замещенных 5Н-1,2,3-дитиазол-5-тионов, представляющих интерес в синтетическом и прикладном плане (см. раздел 2.3.).

2.1.4 Синтез 4-замещенных 5H-1,2,3-дитиазол-5-иминов 7

Основываясь на аналогиях реакций солей 1 с кислородсодержащими и серосодержащими нуклеофилами, мы предположили, что реакция хлоридов 1,2,3-дитиазолия с азотсодержащими нуклеофилами (например, анилином) приведет к иминам 1,2,3-дитиазолов. Действительно, обработав анилином на последней стадии реакционную смесь этаноноксимов 3 с S2Cl2, мы получили имины 7 с умеренными выходами (Схема 8).

Схема 8

В литературе описано [24] взаимодействие соли Аппеля 1k с еще одним азотсодержащим нуклеофилом – гидразином. Реакция проходит в ацетонитриле и приводит к симметричному гидразону 8 (Схема 9).

Схема 9

Мы ввели гидразин в реакционную смесь ацетофеноноксима 3а с монохлоридом серы при 0 оС, однако в результате был выделен только тион 6а с выходом 68% (Схема 10). Очевидно, что в этом случае гидразин выступает в роли восстановителя и образует с элементной серой, присутствующей в реакционной смеси, серосодержащий нуклеофил, который реагирует по пятому положению цикла с образованием тиона 6а.

Схема 10

2.1.5 Синтез 4-замещенных 5H-1,2,3-дитиазол-5-илиденов 9 и 10

Мы исследовали взаимодействие полученных нами 4-замещенных солей 1,2,3-дитиазолия с соединениями, содержащими активированную метиленовую группу. В качестве модельного превращения была выбрана реакция ацетофеноноксима 3а и S2Cl2 с последующей обработкой С-нуклеофилом – малонодинитрилом.

Оказалось, что помимо целевого продукта 9а, в реакционной смеси происходит образование значительного количества другого продукта - 4-фенил-1,2,3-дитиазол-5-тиона 6а (Схема 11). C целью разработки оптимальных для образования 9а условий реакции соли 1а с малонодинитрилом мы варьировали соотношение реагентов, температуру и время выдержки реакционной смеси. При этом было установлено, что все эти три фактора влияют на выход целевого продукта 9а. Основные результаты наших исследований представлены в Таблице 3.

Схема 11

Таблица 3. Реакция ацетофеноноксима 3а (10 ммолей) с S2Cl2 (20 ммолей), пиридином (30 ммолей) и малонодинитрилом.

Опыт Количество CH2(CN)2 /ммоль T/ºC Время реакции /мин Выход продуктов реакции (%)
1 10 -5 30 7 40
2 10 -5 60 7 37
3 10 -5 90 8 33
4 10 -20 60 5 28
5 30 -5 30 8 33
6 30 -20 60 8 23
7 30 -20 90 11 25
8 50 -15 60 17 27
9 50 -15 90 17 27
10 100 -15 90 16 27

Мы установили, что введение в реакцию избытка малонодинитрила и понижение температуры позволяет, в некоторой степени, подавлять конкурирующий процесс образования тиона 6а, однако, при понижении температуры реакции до –20 °С малонодинитрил (таблица 3, оп. 4), по-видимому, также проявляет низкую активность, о чем свидетельствуют выходы целевого илидена 9а. Тем не менее, нам удалось посредством увеличения избытка малонодинитрила до пятикратного и выдержки реакционной смеси в течение 1 часа при –15 °С частично подавить конкурирующий процесс образования тиона 6а и повысить выход илидена 9а с 7% до 17% (таблица 3, оп. 8). Дальнейшее увеличение избытка малонодинитрила до десятикратного и времени выдержки реакционной смеси до 1.5 часа не позволили нам получить целевой продукт с более высоким выходом (таблица 3, оп. 9, 10).