Смекни!
smekni.com

Синтез и свойства 4-замещенных 5Н-123-дитиазолов (стр. 14 из 26)

Мы исследовали влияние избытка морфолина по отношению к тиону 6а на выход продукта 22а и элементной серы. Данные представлены в Таблице 4.

Таблица 4. Выход продукта при различных соотношениях тион 6а – морфолин

Соотношение реагентов тион 6a и морфолина (моль : моль) Выход продукта 22a (%) Количество серы 2/8 S8
1:1 44* 27%
1:2 75 91%
1:4 77 -
1:6 73 -

*- выделен также исходный тион 6а с выходом 37%.

Мы показали, что наибольший выход продукта 22а получается при соотношении реагентов 1:2. При эквимольном соотношении тиона 6a и вторичного амина реакция протекает не до конца, в этом случае было выделено исходное 6а в количестве 37%. При увеличении количества морфолина с двух до 4 и 6 молей выход продукта не меняется. Количество выделенной при двукратном избытке морфолина серы позволяет предположить, что молекула тиона 6 в результате реакции теряет два атома серы, вероятно из 1,2,3-дитиазольного цикла.

На основании данных элементного анализа и масс-спектрометрии, ИК-спектроскопии и ЯМР-спектроскопии продукту было приписано строение -иминотиоацетамида 22а. Масс-спектр соединения 22а содержит пик молекулярного иона. В спектре ЯМР 1Н соединения 22а присутствует пик протона имина в области 9.5 м.д. Для ИК-спектра имина 22а характерна интенсивная полоса валентных колебаний N-H в области 3190-3240 см-1. Распространив указанные условия на ряд других тионов 6 мы получили -иминотиоацетамиды 22 с хорошими выходами. (Схема 32).

Схема 32

Таким образом, установлено, что тионы 6 реагируют с двукратным избытком морфолина DMSO при комнатной температуре с раскрытием 1,2,3-дитиазольного цикла и образованием -иминотиоацетамидов 22.

На примере фенильного производного 6а было показано, что аналогичным образом реакция протекает и с другими вторичными аминами с образованием иминов 22 (Схема 33).

Схема 33

Нами обнаружено, что при взаимодействии тиона 6e с морфолином в диметилформамиде, вместо ожидаемого морфолилпроизводного образуется диметиламинопроизводное 22j с выходом 62% (Схема 34).

Схема 34

Согласно литературным данным аналогичное образование диметиламинного вместо морфолильного производного происходит при проведении реакции -хлорацетанилида с серой и морфолином в диметилформамиде [113].

На примере фенилпроизводного 6a было показано, что реакция с несимметричным вторичным амином – метил-н-бутиламином, приводит к образованию смеси Z- и E- изомеров в соотношении 1:1 (соотношение изомеров определено методом ЯМР 1Н спектроскопии) (Схема 35). Общий выход Z- и E- изомеров -иминотиоацетамида 22k составил 77%. Разделить изомеры кристаллизацией из различных растворителей, а также хроматографическими методами, нам не удалось.

Схема 35

В литературе известно только одно соединение ряда 2-иминотиоацетамидов 22 [114], которое получают аминированием соответствующего оксопроизводного аммиаком в присутствии четыреххлористого титана. Полученные нами производные 22 могут представлять интерес в синтезе новых гетероциклических соединений [52].

2.2.2.2 Реакции 4-замещенных 5Н-1,2,3-дитиазол-5-онов 4 со вторичными аминами

Реакция кетона 4а с морфолином при комнатной температуре в диметилсульфоксиде (в менее полярных растворителях взаимодействие не происходит) приводит к образованию одного основного продукта, которому на основании данных ЯМР-спектроскопии, масс-спектрометрии и элементного анализа было приписано строение 2-фенил-1-(4-морфолил)-2-оксоэтанона 23а, т.е. реакция проходит с раскрытием 1,2,3-дитиазольного цикла. Было установлено, что при эквимольном соотношении реагентов часть исходного кетона остается неизрасходованной. При использовании избытка амина, превышающего двукратный, происходит значительное уменьшение выхода конечного продукта 23а пропорционально увеличению избытка амина, о чем свидетельствуют данные, представленные на Схеме 36. Реакция сопровождается образованием элементной серы, которая была выделена с 80%-ным выходом (в расчете на S2) при использовании двух эквивалентов амина.


Схема 36

Мы распространили оптимальные условия получения -оксоацетамида 23а на ряд кетонов 4 и получили нециклические -оксоацетамиды 23, как правило, с хорошими выходами (Схема 37).

Схема 37

На примере фенильного производного 4a было показано, что кетоны 4 реагируют и с другими вторичными аминами с образованием -оксоацетамидов 23 с хорошими выходами (Схема 38).

Схема 38

Очевидно, что промежуточными соединениями при образовании -оксоацетамидов 23 должны быть -иминоацетамиды типа 24, однако только в одном случае, для 4-фторфенильного производного 4с, нам удалось выделить -иминоацетамид 24. Образованием стабильного продукта 24 можно объяснить низкий выход -оксоацетамида 23с (Схема 39).


Схема 39

Мы показали, что при взаимодействии кетона 4e с морфолином в диметилформамиде, также, как и в реакции c тионом 6e, вместо ожидаемого морфолинопроизводного образуется диметиламинопроизводное с выходом 74% 23j (Схема 40).

Схема 40

На примере фенилпроизводного 4a было установлено, что реакция со вторичным амином, содержащим два различных заместителя – метил-н-бутиламином, так же как и в случае тиона 6а, приводит к образованию смеси Z- и E- изомеров -оксоацетамида 23k в соотношении 1:1, о чем свидетельствуют данные ЯМР 1Н спектроскопии (Схема 41). Общий выход Z- и E- изомеров -оксоацетамида 23k составил 56%. Разделить изомеры кристаллизацией из различных растворителей, а также хроматографическими методами нам не удалось.

Схема 41


В литературе не описан метод селективного получения несимметричных -оксоацетамидов. Как правило, их получают в виде рацемической смеси, которую потом разделяют кристаллизацией, при этом в качестве затравки для выделения Z- или E- изомера используют кристаллик чистого изомера [115].

Строение -оксоацетамидов 23 подтверждено данными элементного анализа, а также данными ЯМР-спектроскопии и масс-спектрометрии, которые согласуются с аналогичными данными для описанных в литературе производных 23a, g, h, i [116-119]. Спектр ЯМР 1Н имина 24 характеризуется сигналом протона N-H в области 9.5 м.д. ИК-спектры соединений 23 и 24 имеют сложные интенсивные полосы в области 1590-1700 см-1, характерные для ацетамидов, а в ИК-спектре имина 24 имеется характерная полоса валентных колебаний N-H 3236 см-1.

Нециклические -иминоацетамиды типа 24 также являются труднодоступными соединениями; в литературе имеется одна публикация с описанием трудоемкой методики их получения [120].

2.2.2.3 Реакции других 4-замещенных 5H-1,2,3-дитиазолов со вторичными аминами

Мы установили, что илидены 9 в диметилсульфоксиде при комнатной температуре под действием вторичных аминов - морфолина и диэтиламина, разлагаются с образованием целого ряда неидентифицированных продуктов. Замена растворителя на тетрагидрофуран также не привела к получению индивидуальных продуктов (Схема 42).

Схема 42


Как было показано на примере фенилпроизводного имина 7а, в ацетонитриле и диметисульфоксиде в различных температурных условиях имины 7 не вступают в реакцию с морфолином и бензиламином (Схема 43). Исходные соединения были выделены из реакционных смесей с количественными выходами.

Схема 43

2.2.3 Предполагаемый механизм взаимодействия 4-замещенных 5Н-1,2,3-дитиазолов 4 и 6 с первичными и вторичными аминами

В литературе предложен механизм реакции 4-хлор-5Н-1,2,3-дитиазола-5-она 4k и -5-тиона 6k с аминами, которая приводит к цианоацетамидам или N,N'-дизамещенным мочевинам [52, 87] (см. раздел 1.2.2.). Наличие в молекуле исходного соединения легко уходящего атома хлора способствует нуклеофильной атаке амина на гетероцикл с последующим его превращением в цианоацетамид. Цианоацетамиды являются хорошими электрофилами и поэтому при атаке второй молекулы амина цианид-анион легко замещается на аминный остаток, что приводит к N,N'-дизамещенным мочевинам.[87]

В синтезированных нами 4-замещенных 1,2,3-дитиазол-5-онах 4 и -5-тионах 6 отщепление группы в 4-ом положении невозможно, что определяет специфику процесса и структуры конечных продуктов. В предлагаемом нами механизме реакций кетонов 4 и тионов 6 с аминами мы предполагаем, что первичная нуклеофильная атака идет по пятому атому углерода цикла с раскрытием его и образованием промежуточного дисульфида 25, который является ключевым интермедиатом в этой реакции. В случае первичных аминов, внутримолекулярная атака амидного азота сопровождается замыканием цикла с одновременным элиминированием молекулы сероводорода и образованием 2,4-дизамещенных 1,2,5-тиадизолов 18 или 21. В случае реакции со вторичными аминами замыкание цикла с образованием соли тиадиазолия 26 маловероятно. Отщепление двухатомной серы приводит либо к устойчивым иминам 22 (или 24), либо далее через стадию гидролиза имина, к оксоацетамидам 23 (или 20) (Схема 44).