Смекни!
smekni.com

Концепции современного естествознания Гусейханов Раджабов (стр. 69 из 104)

349


лек с высокой концентрацией полимеров. Часть этих капелек поглощали из среды низкомолекулярные соединения: аминокислоты, глюкозу, примитивные катализаторы. Взаимодействие молекулярного субстрата и катализаторов уже означало возникновение простейшего метаболизма внутри протобионтов.

Схема образования коацерватной капли следующая: молекула белка в растворе сближение молекул белка с потерей воды образование коацерватной капли.

Обладавшие метаболизмом капельки включали в себя из окружающей среды новые соединения и увеличивались в объеме. Когда коацерваты достигли размера, максимально допустимого в данных физических условиях, они распадались на более мелкие капельки, например, под действием волн, как это происходит при встряхивании сосуда с эмульсией масла в воде. Мелкие капельки вновь продолжали расти и затем образовывали новые поколения коацерватов. Постепенное усложнение протобионтов осуществлялось отбором таких коацерватных капель, которые обладали преимуществом в лучшем использовании вещества и энергии среды. Отбор как основная причина совершенствования коацерватов до первичных живых существ — центральное положение в гипотезе Опарина.

Генетическая гипотеза. Согласно этой гипотезе, вначале возникли нуклеиновые кислоты как матричная основа синтеза белков. Впервые ее выдвинул в 1929 г. Г. Меллер. Способность нуклеиновых кислот служить матрицами при образовании комплементарных цепей (например, синтез и-РНК на ДНК) — наиболее убедительный аргумент в пользу представлений о ведущем значении в процессе биогенеза наследственного аппарата и, следовательно, в пользу генетической гипотезы происхождения жизни. Гены наследственности располагаются в ДНК и передача информации идет в направлении ДНК-РНК-белок. Изменение пути передачи информации РНК-белок-ДНК произошло в результате эволюции РНК.

У английского ученого Дж. Холдейна "живыми или полуживыми объектами" назывались большие молекулы, способные к созданию своих копий. Живые тела, существующие на

350


Земле, представляют собой открытые, саморегулирующиеся и самовоспроизводящиеся системы, построенные из биополимеров — белков и нуклеиновых кислот. Вещество обрело тем самым важнейшее свойство самовоспроизведения и вступило в новую фазу эволюции — фазу самоорганизации через самовоспроизведения. Здесь большое значение имело образование молекулярного языка биополимеров. Элементарный язык биологической системы — это химический язык. Он имеет алфавит, состоящий из различных сортов нуклеотидов и аминокислот. Он позволяет выстраивать последовательности символов различной длины — единицы мутации, кодирования и рекомбинации. Возникали все более сложные репликативные системы, конкурировавшие друг с другом.

Возникновение протоклеток положило начало биологической эволюции вещества. После того как углеродистые соединения образовали "первичный бульон", могли уже организоваться биополимеры — белки и нуклеиновые кислоты, обладающие свойством самопроизводства себе подобных. Механизм естественного отбора действовал на самых ранних стадиях зарождения органических веществ — из множества образующихся веществ сохранялись устойчивые к дальнейшему усложнению. Как показывает синергетика, энергия имела для возникновения жизни не меньшее значение, чем вещество. Некоторые из первых стадий эволюции к жизни были связаны с возникновением механизмов, способных поглощать и трансформировать химическую энергию, как бы выталкивая систему в сильно неравновесные условия.

Начало жизни на Земле положило появление нуклеиновых кислот, способных к воспроизводству белков. Однако до сих пор остаются неясными детали перехода от сложных органических веществ к простым живым организмам. Теория биохимической эволюции предлагает лишь общую схему. В соответствии с ней на границе между коацерватами — сгустками органических веществ — могли выстраиваться молекулы сложных углеводородов, что приводило к образованию примитивной клеточной мембраны, обеспечивающей коацерватам стабильность. В результате включения в коацерват молекулы, способной к

351


самовоспроизведению, могла возникнуть примитивная клетка, способная к росту. Следующим шагом в организации живого должно было стать образование мембран, которые отграничивали смеси органических веществ от окружающей среды. С их появлением и получается клетка — "единица жизни", главное структурное отличие живого от неживого.

Основные этапы биогенеза. Процесс биогенеза включал три основных этапа: возникновение органических веществ, появление сложных полимеров (нуклеиновых кислот, белков, полисахаридов), образование первичных живых организмов. Клетка — основная элементарная единица жизни, способная к размножению, в ней протекают все главные обменные процессы (биосинтез, энергетический обмен и др.). Поэтому возникновение клеточной организации означало появление подлинной жизни и начало биологической эволюции.

Все основные процессы, определяющие поведение живого организма, протекают в клетках. Тысячи химических реакций происходят одновременно, для того чтобы клетка могла получить необходимые питательные вещества, синтезировать специальные биомолекулы и удалить отходы. Огромное значение для биологических процессов в клетке имеют ферменты. Синтез белка осуществляется в клетке. Величина клеток — от микрометра до более одного метра. Клетки могут быть дифференцированными (нервные, мышечные и т. д.). Большинство из них обладают способностью восстанавливаться, но некоторые, например, нервные — нет или почти нет.

На рис. 14.1 изображено "дерево" эволюции жизни на нашей планете.

Рассмотрим подробнее особенности эволюции на клеточном уровне организации жизни. Наибольшее различие существует не между растениями, грибами и животными, а между организмами, обладающими ядром (эукариоты) и не имеющими его (прокариоты). Последние представлены низшими организмами —бактериями и сине-зелеными водорослями (цианобактерии, или цианеи), все остальные организмы — эукариоты, которые сходны между собой по внутриклеточной организации, генетике,

352


биохимии и метаболизму. Различие между прокариотами и эу-кариотами заключается еще и в том, что первые могут жить как в бескислородной (облигатные анаэробы), так и в среде с разным содержанием кислорода (факультативные анаэробы и аэробы), в то время как для эукариотов, за немногим исключением, обязателен кислород. Все эти различия имели существенное значение для понимания ранних стадий биологической эволюции. Сравнение прокариот и эукариот по потребности в кислороде приводит к заключению, что прокариоты возникли в период, когда содержание кислорода в среде изменялось. Ко времени же появления эукариот концентрация кислорода была высокой и относительно постоянной. Первые фотосинтезирующие организмы появились около 3 млрд лет назад, а значительное количество данных об ископаемых эукариотах позволяет сказать, что их возраст составляет около 1,5 млрд лет. Можно предположить, что первая микрофлора и первая микрофауна появились

353


3,3-4 млрд лет назад. Первыми микроорганизмами могли быть бактерии или примитивные водоросли. В дальнейшем важную роль начали играть трофические связи. Основанием возникшей трофической цепи служили автотрофные растения, которые производили молекулярные структурные единицы из воды и молекул газа под действием солнечного света. Они медленно изменяли состав атмосферы. Из неассимилирующих организмов шанс на выживание имели лишь паразиты на протофлоре. Так появился принцип гетеротрофии, под которым понимают любой организм (травоядный, плотоядный или всеядный), который питается другими организмами.

Возникновение содержащей кислород атмосферы, начавшееся 2 млрд лет назад, глубоко изменило условия существования жизни. Для живых существ той далекой эпохи кислород был высокотоксичным газом, который в результате процесса окисления мог привести к разрушению органических молекул. Мутация и отбор помогли преодолеть и эту смертельную угрозу: возникли живые организмы, снабженные сначала примитивными органами, а впоследствии жабрами и легкими, которые развили высокоэффективные механизмы обмена веществ для атмосферы, содержащей кислород.

Собственно биологическая эволюция начинается с возникновения клеточной организации и в дальнейшем идет по пути совершенствования строения и функций клетки, образования многоклеточной организации, разделения живого на царства растений, животных, грибов с последующей их дифференциацией на виды.

Основные положения естественно-научной теории происхождения жизни следующие.

1. Органические вещества сформировались из неорганических под действием физических факторов среды.

2. Органические вещества взаимодействовали, образуя все более сложные вещества, в результате чего возникли ферменты и самовоспроизводящиеся системы — свободные гены.

3. Свободные гены соединялись с другими высокомолекулярными органическими веществами.

354


4. Вокруг них стали образовываться белково-липидные мембраны.

5. Возникли клетки.

6. Из гетеротрофных организмов развились автотрофные.
Основные этапы развития жизни на Земле представлены

в табл. 14.1.

Таблица 14.1 Основные этапы развития жизни на Земле

Реальная шкала времени Относительная шкала времени Этапы развития жизни
3,5—4 млрд л. н. 1 января Процессы, приведшие к образованию органических молекул
1 февраля Свидетельства существования первых бактерий
1 марта Бактериальные колонии
3 млрд л. н. 1 апреля Нитчатые фотосинтезирующие водоросли
1 мая Рост разнообразия бактерий
2,5 млрд л. н. 1 июня Высокое разнообразие бактерий
2 млрд л. н. 1 июля Развитие сложноорганизованных клеток
1,5 млрд л. н. 1 сентября Первые клетки, характерные для живых и высших растений
1 млрд л. н. 1 октября Рост разнообразия жизненных форм в морях, появление всех типов беспозвоночных
500 млн л. н. 1 ноября Начало освоения суши, первые челюст-норотые рыбы, развитие позвоночных
300 млн л. н. 1 декабря Развитие млекопитающих, динозавры, амфибии
100 млн л. н. Господство млекопитающих
11 млн л. н. 31 декабря 8 ч Начало эволюции человека
5 млн л. н. 16 ч Ископаемые останки людей
23 ч 59 м 58 с Начало промышленной революции

Вопрос о закономерном или случайном характере возникновения живых существ является самым трудным для принятия различных концепций происхождения жизни. В гипотезе