Смекни!
smekni.com

Рациональные уравнения и неравенства (стр. 2 из 11)


Квадратное уравнение, в котором коэффициент при x2равен 1, называется приведённым. Обычно приведённое квадратное уравнение обозначают так:

x2 + px + q = 0.

Теорема Виета.

Мы вывели тождество

x2 + (b / a)x + (c / a) = (x – x1)(x – x2),

где X1и X2— корни квадратного уравнения ax2 + bx + c =0. Раскроем скобки в правой части этого тождества.

x2 + (b / a)x + (c / a) = x2 – x1x – x2x + x1x2 = x2 – (x1 + x2)x +x1x2.

Отсюда следует, что X1 + X2 = – b / a и X1X2 = c / a. Мы доказали следующую теорему, впервые установленную французским математиком Ф. Виетом (1540 – 1603):

Теорема 1 (Виета). Сумма корней квадратного уравнения равна коэффициенту при X,взятому c противоположным знаком и делённому на коэффициент при X2; произведение корней этого уравнения равно свободному члену, делённому на коэффициент при X2.

Теорема 2 (обратная). Если выполняются равенства

X1 + X2 = – b / a и X1X2 = c / a,

то числа X1и X2являются корнями квадратного уравнения ax2 + bx + c = 0.

Замечание.Формулы X1 + X2 = – b / a и X1X2 = c / a остаются верными и в случае, когда уравнение ax2 + bx + c = 0 имеет один корень X1кратности 2, если положить в указанных формулах X2 = X1. Поэтому принято считать, что при D = 0 уравнение ax2 + bx +c = 0 имеет два совпадающих друг с другом корня.

При решении задач, связанных с теоремой Виета, полезно использовать соотношения

(1 / X1) + (1/ X2)= ( X1 + X2)/ X1X2 ;

X12 + X22 = (X1 + X2)2 – 2 X1X2;

X1 / X2 + X2 / X1 = (X12 + X22) / X1X2 = ((X1 + X2)2 – 2X1X2) / X1X2;

X13 + X23 = (X1 + X2)(X12 – X1X2 + X22) =

= (X1 + X2)((X1 + X2)2 – 3X1X2).

Пример 3.9. Решить уравнение 2x2 + 5x – 1 = 0.

Решение. D = 25 – 42(– 1) = 33 >0;

X1 = (- 5 + Ö33) / 4; X2 = (- 5 -Ö33) / 4.

Ответ: X1 = (- 5 + Ö33) / 4; X2 = (- 5 -Ö33) / 4.

Пример 3.10. Решить уравнение x3 – 5x2 + 6x = 0

Решение.Разложим левую часть уравнения на множители x(x2 – 5x + 6) = 0,

отсюда x = 0 или x2 – 5x + 6 = 0.

Решая квадратное уравнение, получаем X1 = 2 , X2 = 3.

Ответ: 0; 2; 3.

Пример 3.11.

x3 – 3x + 2 = 0.

Решение. Перепишем уравнение, записав –3x = – x – 2x, x3 – x – 2x + 2 = 0, а теперь группируем

x(x2 – 1) – 2(x – 1) = 0,

(x – 1)(x(x + 1) – 2) = 0,

x – 1 = 0, x1 = 1,

x2 + x – 2 = 0, x2 = – 2, x3 = 1.

Ответ: x1 = x3 = 1, x2 = – 2.

Пример 3.12. Решить уравнение

7(x – 1)(x – 3)(x – 4)

(2x – 7)(x + 2)(x – 6)

Решение. Найдём область допустимых значений x:

X + 2 ¹ 0; x – 6 ¹ 0; 2x – 7 ¹ 0 или x ¹ – 2; x ¹ 6; x ¹ 3,5.

Приводим уравнение к виду (7x – 14)(x2 – 7x + 12) = (14 – 4x)(x2 – 4x – 12), раскрываем скобки.

7x3 – 49x2 + 84x – 14x2 + 98x – 168 + 4x3 – 16x2 – 48x – 14x2 + 56x + 168 = 0,

11x3 – 93x2 + 190x = 0,

x(11x2 – 93x + 190) = 0,

x1 = 0

11x2 – 93x + 190 = 0,

93±Ö(8649 – 8360) 93 ± 17

x2,3 = = ,

22 22

т.е. x1 = 5; x2 = 38 / 11.

Найденные значения удовлетворяют ОДЗ.

Ответ: x1 = 0; x2 = 5; x3 = 38 / 11.

Пример 3.13. Решить уравнение x6 – 5x3 + 4 = 0

Решение.Обозначим y = x3, тогда исходное уравнение принимает вид

y2 – 5y + 4 = 0, решив которое получаем Y1 = 1; Y2 = 4.

Таким образом, исходное уравнение эквивалентно совокупности

уравнений:x3 = 1 или x3 = 4, т. е. X1 = 1 или X2 = 3Ö4

Ответ: 1; 3Ö4.

Пример 3.14. Решить уравнение (x3 – 27) / (x – 3) = 27

Решение.Разложим числитель на множители (по формуле разности кубов):

(x – 3)(x2 + 3x + 9) / (x – 3) = 27 . Отсюда:

x2 + 3 x + 9 = 27,

x – 3 ¹ 0;


x2 + 3 x – 18 = 0,

x ¹ 3.

Квадратное уравнение x2 + 3 x – 18 = 0 имеет корни X1 = 3; X2 = -6

(X1 не входит в область допустимых значений).

Ответ: -6

Пример 3.15. Решить уравнение

(x2 + x –5) / x + (3x) / (x2 + x – 5) = 4.

Решение.Обозначим y= (x2 + x – 5) / x, тогда получаем уравнение y + 3 / y = 4.

Преобразуем его:y + 3 / y – 4 = 0, (y2 – 4y + 3) / y = 0, отсюда

y2 – 4y + 3 = 0,

y ¹ 0

Квадратное уравнение y2 – 4y + 3 = 0 имеет корни Y1 = 1; Y2 = 3 (оба корня входят в область допустимых значений).

Таким образом корни, исходное уравнение эквивалентно (равносильно) совокупности уравнений

(x2+ x – 5) / x = 1 или (x2+ x – 5) / x = 3.

Преобразуем их:

(x2+ x – 5) / x – 1 = 0 или (x2+ x – 5) / x – 3 = 0;

x2 – 5 = 0,

x ¹ 0

или

x2 – 2x – 5 = 0,

x ¹ 0;

X1 = Ö5; X2 = – Ö5 или X3 = 1 + Ö6; X4 = 1 – Ö6

(все найденные корни уравнения входят в область допустимых значений).

Ответ:Ö5; – Ö5; 1 + Ö6; 1 – Ö6 .

Пример 3.16. Решить уравнение x(x + 2)(x + 3)(x + 5) = 72.

Решение.Перегруппируем сомножители и преобразуем полученное уравнение

(x + 2)(x + 3)(x + 5)x = 72, (x2 + 5x + 6)(x2 + 5x) = 72.

Обозначим y = x2 + 5x, тогда получим уравнение (y + 6)y = 72, или

y2 + 6y – 72 = 0.

Корни этого уравнения:Y1 = 6; Y2 = – 12.

Таким образом, исходное уравнение эквивалентно совокупности уравнений

x2 + 5x = 6 или x2 + 5x = – 12.

Первое уравнение имеет корни X1 = 1; X2 = – 6. Второе уравнение корней не имеет, так как D = 26 – 48 = – 23 < 0.

Ответ: – 6; 1.

Пример 3.17. Решить уравнение 4x2 + 12x + 12 / x + 4 / x2 = 47.

Решение.Сгруппируем слагаемые:4(x2 + 1 / (x2)) + 12(x + 1 / x) = 47.

Обозначим y = x + 1 / x, при этом заметим, что

y2 = (x +1 / x)2 = x2 +2 + 1 / (x2),

отсюда x2 + 1 / (x2) = y2 – 2. С учётом этого получаем уравнение

4(y2 – 2) + 12y = 47, или 4y2 + 12y - 55 = 0.

Это квадратное уравнение имеет корни Y1 = 5 / 2; Y2 = – 11 / 2.

Исходное уравнение эквивалентно совокупности уравнений

x + 1 / x = 5 / 2 или x + 1 / x = – 11 / 2.

Решим их:

x + 1 / x – 5 /2 = 0 или x + 1 / x + 11 / 2 = 0;

2x2 – 5x + 2 = 0,

x ¹ 0

или

2x2 + 11x + 2 = 0,

x ¹ 0;

X1 = 2; X2 = 1 / 2 или X3 = ( - 11 + Ö105) / 4; X4 = ( -11 - Ö105) / 4

(все найденные корни уравнения входят в область допустимых значений).

Ответ: 2; 0,5; ( - 11 + Ö105) / 4; (-11 - Ö105) / 4.

Пример 3.18. Решить уравнение x3 – x2 – 9x – 6 = 0.

Решение. Угадаем хотя бы один корень данного уравнения. “Кандидатами” в целочисленные корни (а только их есть надежда отгадать) являются числа

±1, ±2, ±3, ±6.

Подстановкой в исходное уравнение убеждаемся, что X = -2 является его корнем.


Разделим многочлен x3 – x2 – 9x – 6 на двучлен x + 2

x3 – x2 – 9x – 6 = (x + 2)(x2 – 3x – 3) = 0.

Решив теперь уравнение x2 – 3x – 3 = 0,

получаем X2 = (3 - Ö21) / 2, X3 = (3 + Ö21) / 2.

Ответ: xÎ {-2; (3 - Ö21) / 2; (3 + Ö21) / 2}.

Пример 3.19.

x3 – x2 – 8x + 6 = 0.

Решение. Здесь an = 1, a0 = 6. Поэтому, если данное уравнение имеет рациональные корни, то их следует искать среди делителей числа 6: ±1, ±2, ±3, ±6. Проверкой убеждаемся, что x = 3, т.к. 27 – 9 – 24 + 6 = 0.

Делим (x3 – x2 – 8x + 6) на (x – 3)

Получаем: x3 – x2 – 8x + 6 = (x – 3)(x2 + 2x – 2), т.е. данное уравнение можно представить в виде (x – 3)(x2 + 2x – 2) = 0. Отсюда находим, что x1 = 3 — решение, найденное подбором, x2,3 = – 1 ±Ö3 — из уравнения x2 + 2x – 2 = 0.

Ответ: x1 = 3; x2,3 = – 1 ±Ö3.

Пример 3.20.

4x4 + 8x3 + x2 – 3x – 1 = 0.

Решение. Здесь an = 4, a0 = –1. Поэтому рациональные корни уравнения следует искать среди чисел: ± 1; ± 0,5; ± 0,25 (делители 4 есть ±1; ±2; ±4, делители (– 1) есть ± 1). Если x = +1, то 4 + 8 + 1 – 3 – 1 ¹ 0; если x = – 0,5, то

4 / 16 – 8 / 8 + 1 / 4 + 3 / 2 – 1 = 0, т.е. x = – 0,5 корень уравнения. Делим

(4x4 + 8x3 + x2 – 3x – 1) на (x + 0,5):

Данное уравнение можно представить в виде:(x + 0,5)(4x3 + 6x2 – 2x – 2) = 0.

Отсюда x1 = – 0,5 (решение, найденное подбором) и 4x3 + 6x2 – 2x – 2 = 0, т.е. 2x3 + 3x2 – x – 1 = 0. Аналогично находим корень этого уравнения:x = – 0,5. Снова делим.

Имеем: (x + 0,5)(2x2 + 2x – 2) = 0. Отсюда x2 = – 0,5 и x3,4 = (– 1 ±Ö5) / 2.

Ответ: x1 = x2 = – 0,5;x3,4 = (– 1 ±Ö5) / 2.

Замечание: зная, что x = – 0,5, можно не заниматься делением, а просто выделить за скобки множитель (x + 0,5). Из 2x3 + 3x2 – x – 1 = 0 следует:

2x3 + 3x2 – x – 1 = 2x3 + x2 +2x2 + x – 2x – 1 = 2x2(x + 0,5) + 2x(x + 0,5) – 2(x+0,5) =

= (x +2)(2x2 + 2x – 2) = 0.

x1 = – 0,5; x3,4 = (– 1 ±Ö5) / 2.

Возвратные уравнения.