а)
; б) ; в) .Атомом назовем также функцию
, . Под обобщенным интервалом понимается либо интервал из , либо множество вида ( ).Данный параграф посвящен аналогу теоремы, доказанной в 1974 году Р.Койфманом о том, что функция
тогда и только тогда, когда функция допускает представление в виде , , где , , - атомы. (*)При этом
, где inf берется по всем разложениям вида (*) функции , а с и С - абсолютные константы.Роль атомических разложений заключается в том, что они в ряде случаев позволяют свести вывод глубоких фактов к относительно простым действиям с атомами.
В частночти, из атомического разложения функций, принадлежащих пространству
, легко вытекает полученный в 1971 году Ч.Фефферманом результат о двойственности пространств и . Доказательству этого факта и посвящен второй параграф данной главы. Сперва мы вводим определение : пространство ВМО есть совокупность всех функций , удовлетворяющих условию , (91)где
, а sup берется по всем обобщенным интервалам . А затем доказываем теорему о том, что .Глава I.
Основные сведения об интеграле Пуассона и
пространствах , и
§I.1.Интеграл Пуассона.
Пусть ¦(x) , g(x) , xÎR1 –суммируемые на [-p, p] , 2p- периодические, комплекснозначные функции. Через f*g(x) будем обозначать свертку
f*g(x) = dtИз теоремы Фубини следует, что свертка суммируемых функций также суммируема на [-p,p] и
cn ( f*g ) = cn ( f )× c-n ( g ) , n = 0, ±1 , ±2 , ... ( 1 )
где { cn ( f )} - коэффициенты Фурье функции f ( x ) :
cn (f)=
-i n tdt , n = 0, ±1, ±2,¼Пусть ¦ Î L1 (-p, p ) . Рассмотрим при 0 £ r < 1 функцию
¦r ( x ) =
n ( f ) r| n | ei n x , x Î [ -p, p ] . ( 2 )Так как
для любых x Î [ -p, p ], n = 0, ±1, ±2,¼, а ряд сходится (так как согласно теореме Мерсера [4] коэффициенты Фурье любой суммируемой функции по ортогональной системе ограниченных в совокупности функций стремятся к нулю при ), то по признаку Вейерштрасса ряд в правой части равенства (2) сходится равномерно по х для любого фиксированного r , 0 £ r < 1 . Коэффициенты Фурье функции ¦r (х) равны cn ( fr ) = cn (f)× r| n | , n = 0 , ±1, ±2, ¼ , а это значит, что ¦r ( x ) можно представить в виде свертки :¦r ( x ) =
, ( 3 )где
, t Î [ -p, p ] . ( 4 )
Функция двух переменных Рr (t) , 0 £ r <1 , t Î [ -p, p ] , называется ядром Пуассона , а интеграл (3) - интегралом Пуассона .
Следовательно,
Pr ( t ) =
, 0 £ r < 1 , t Î [ -p, p] . ( 5 )Если ¦Î L1 ( -p, p ) - действительная функция , то , учитывая , что
c-n ( f ) =
, n = 0, ±1, ±2,¼, из соотношения (2) мы получим :fr ( x ) =
=
, ( 6 )где
F ( z ) = c0 ( f ) + 2
( z = reix ) ( 7 )- аналитическая в единичном круге функция как сумма равномерно сходящегося по х ряда [5]. Равенство (6) показывает, что для любой действительной функции ¦Î L1( -p, p ) интегралом Пуассона (3) определяется гармоническая в единичном круге функция
u ( z ) = ¦r (eix ) , z = reix , 0 £ r <1 , x Î [ -p, p ] .
При этом гармонически сопряженная с u (z) функция v (z) c v (0) = 0 задается формулой
v (z) = Im F (z) =
. ( 8 )Утверждение1.
Пусть u (z) - гармоническая ( или аналитическая ) в круге | z | < 1+e ( e>0 ) функция и ¦ (x) = u (eix) , xÎ[ -p, p ] . Тогда
u (z) =
( z = reix , | z | < 1 ) ( 10 )Так как ядро Пуассона Pr (t) - действительная функция, то равенство (10) достаточно проверить в случае, когда u (z) - аналитическая функция:
= , | z | < 1+ e .
Но тогда коэффициенты Фурье функции
связаны с коэффициентами Фурье функции следующим образом :
и равенство (10) сразу следует из (2) и (3).
Прежде чем перейти к изучению поведения функции ¦r (x) при r®1 , отметим некоторые свойства ядра Пуассона:
а)
;б)
; (11)в) для любого d>0
Соотношения а) и в) сразу следуют из формулы (5), а для доказательства б) достаточно положить в (2) и (3) ¦ (х) º 1.