Смекни!
smekni.com

Курс лекций по теории вероятностей (стр. 17 из 20)

Определение 46. Говорят, что последовательность с. в. n }сходится почти наверное к с. в. ξпри n®¥ , и пишут: ξn®ξ п. н., если P{ ω: ξn (ω ) ® ξприn®¥} = 1.

Иначе говоря, если ξn (ω ) ® ξприn®¥ для всех ω ÎΩ, кроме, возможно, ω ÎA, где множество (событие) A имеет нулевую вероятность.

Заметим сразу: чтобы говорить о сходимости «почти наверное», требуется (по крайней мере, по определению) знать, как устроены отображения ω® ξn (ω ). В задачах же теории вероятностей, как правило, известны не сами случайные величины, а лишь их распределения. Известно, то есть, какова вероятность тех элементарных исходов ω, для которых ξn (ω ) принимает значения в заданном множестве. Можем ли мы, обладая только информацией о распределениях, говорить о какой-либо сходимости последовательности случайных величин n } к с. в. ξ?

Можно, например, потребовать, чтобы вероятность («доля») тех элементарных исходов ω, для которых ξn (ω ) не попадает в «ε-окрестность» числа ξ (ω ), уменьшалась до нуля с ростом n. Такая сходимость в функциональном анализе называется сходимостью «по мере», а в теории вероятностей — сходимостью «по вероятности».

Определение 47. Говорят, что последовательность с. в. { ξn }сходятся по вероятности к с. в. ξпри n ®¥, и пишут:

если для любого ε > 0

Пример 45. Рассмотрим последовательность с. в. ξ1 , ξ2, …, в которой все величины имеют разные распределения: с. в. ξn, n > 0, принимает значения и 0 и n7 с вероятностями

. Докажем, что эта последовательность сходится по вероятности к случайной величине, равной нулю п. н. (к нулю, проще говоря).

Действительно, зафиксируем произвольное ε > 0. Для всех n начиная с некоторого n0такого, что n07 > ε верно равенство (*) ниже

Итак, случайные величины ξn с ростом nмогут принимать все большие и большие значения, но со все меньшей и меньшей вероятностью.

Замечание 18. Сходимость по вероятности не обязательно сопровождается сходимостью математических ожиданий или моментов других порядков: из

не следует, что

Действительно, в примере 45 имеет место сходимость

, но неверно, что

Если вместо значения n7 взять, скажем, n (с той же вероятностью 1/ n), получим

А если ξn принимает значения 0 и

с теми же вероятностями, что и в примере 45, то
, но уже вторые моменты сходиться ко второму моменту ξ не будут:

Сходимость по вероятности обладает обычными для сходимостей свойствами. Например, такими.

Свойство 13. Если

, то

1.

;

2.

.

Свойство 14.

Если

, и g – непрерывная функция, то

Если

, и g– непрерывна в точке с, то

Чтобы доказывать сходимость по вероятности, можно просто уметь вычислять

при больших n. Но для этого нужно знать распределение ξn, что не всегда возможно. Скажем, ξn может быть суммой нескольких других с. в., распределения которых не устойчивы по суммированию, и вычислить распределение их суммы по формуле свертки или как-то еще бывает слишком сложно.

Если бы мы имели неравенства, позволяющие оценить

сверху чем-либо, что мы умеем устремлять к нулю и что проще вычисляется, то сходимость по вероятности мы получили бы по лемме о двух милиционерах:
. Итак, неравенства П. Л. Чебышёва.

13.2 Неравенства Чебышёва

Все неравенства в этом параграфе принято относить к одному классу, называемому «неравенствами Чебышёва». Следующее неравенство часто называют собственно неравенством Чебышёва, хотя в такой форме оно появилось впервые, видимо, в работах А. А. Маркова (например, Исчисление вероятностей, 1913 г.).

Теорема 27 (Неравенство Маркова).

Если

, то для любого положительного x

Доказательство. Введем новую случайную величину ξx, называемую «срезкой» с. в. ½ξ½ на уровне x:

Для неё и,

1.

2.

Нам потребуется следующее понятие.

Определение 48. Пусть A — некоторое событие. Назовем индикатором события Aслучайную величину I(A), равную единице, если событие A произошло, и нулю, если Aне произошло.

По определению, I(A) имеет распределение Бернулли с параметром p = P(I(A) = 1) = P(A), и ее математическое ожидание равно вероятности успеха p = P(A).

Случайную величину ξх можно представить в виде

Тогда

(11)

Вспомним, что

, и оценим
снизу согласно (11):

Итак,

, что и требовалось доказать.

Следующее неравенство мы будем называть «обобщенным неравенством Чебышёва».

Следствие 12. Пусть функция g монотонно возрастает и неотрицательна на [0,¥]. Если

, то для любого положительного х

В 1853 г. И. Бьенеме (I. Bienayme) и в 1866 г., независимо от него, П. Л. Чебышёв прямыми методами доказали следующее неравенство

Следствие 13 (Неравенство Чебышёва-Бьенеме). Если

, то

В качестве следствия получим так называемое «правило трех сигм», которое формулируют, например, так: вероятность случайной величине отличаться от своего математического ожидания более, чем на три корня из дисперсии, мала. Разумеется, для каждого распределения величина этой вероятности своя: для нормального распределения, например, эта вероятность равна 0,0027 — см. свойство 9. Мы получим верную для всех распределений с конечной дисперсией оценку сверху для «вероятности с. в. отличаться от своего математического ожидания более, чем на три корня из дисперсии».

Следствие 14. Если

, то

13.3 Законы больших чисел

Определение 49. Говорят, что последовательность с. в.

с конечными первыми моментами удовлетворяет закону больших чисел (ЗБЧ), если

(12)