Законами больших чисел принято называть утверждения об условиях, при которых последовательность с. в. «удовлетворяет закону больших чисел».
Выясним сначала, что означает и когда выполнен ЗБЧ для независимых и одинаково распределенных с.в.
Заметим, что если с. в. одинакого распределены, то математические ожидания у них одинаковы (и равны, например,
), поэтому (12) можно записать в видеИтак, законы больших чисел.
Теорема 28 (ЗБЧ в форме Чебышёва).
Для любой последовательности независимых и одинаково распределенных случайных величин с конечным вторым моментом
имеет место сходимость:ЗБЧ утверждает, что среднее арифметическое большого числа случайных слагаемых «стабилизируется» с ростом этого числа. Как бы сильно каждая с. в. не отклонялась от своего среднего значения, при суммировании эти отклонения «взаимно гасятся», так что среднее арифметическое приближается к постоянной величине.
В дальнейшем мы увидим, что требование конечности второго момента (или дисперсии) связано исключительно со способом доказательства, и что утверждение остается верным если требовать существования только первого момента.
Доказательство. Обозначим через
сумму первых nс. в., а их среднее арифметическое через . ТогдаПусть ε > 0. Воспользуемся неравенством Чебышёва (следствие 13):
(13)при
, поскольку , по условию, конечна.Следствие 15. Последовательность с. в.
с конечными вторыми моментами удовлетворяет ЗБЧ, то естьпри выполнении любого из следующих условий:
а) если
, то есть при ;б) если
независимы и , то естьв) если
независимы, одинаково распределены и имеют конечную дисперсию (ЗБЧ Чебышёва).Теорема 29 (ЗБЧ в форме Хинчина).
Для любой последовательности независимых и одинаково распределенных случайных величин с конечным первым моментом
имеет место сходимость:Более того, в условиях теоремы 29 имеет место сходимость «почти наверное». Получим в качестве следствия из ЗБЧ Чебышёва закон больших чисел Я. Бернулли (1713). В отличие от доказанного через полтора столетия ЗБЧ Чебышёва, описывающего предельное поведение среднего арифметического с. в. с произвольными распределениями, ЗБЧ Бернулли — утверждение только для схемы Бернулли.
Теорема 30 (ЗБЧ Бернулли).
Пусть А — событие, которое может произойти в любом из n независимых испытаний с одной и той же вероятностью P(А). Пусть vn(А) — число осуществлений события А в n испытаниях. Тогда
При этом для любого ε > 0
13.4 Примеры использования ЗБЧ и неравенства Чебышёва
Пример 46.
Монета подбрасывается 10 000 раз. Оценить вероятность того, что частота выпадения герба отличается от вероятности более чем на одну сотую.
Требуется оценить
, где —число выпадений герба, а — независимые с. в., имеющие распределение Бернулли с параметром 1/2, равные «числу гербов, выпавших при i-м подбрасывании» (то есть единице, если выпал герб и нулю иначе, или индикатору того, что выпал герб). Поскольку , искомая оценка сверху выглядит так:Иначе говоря, неравенство Чебышёва позволяет заключить, что, в среднем, не более чем в четверти случаев при 10 000 подбрасываниях монеты частота выпадения герба будет отличаться от 1/2 более чем на одну сотую. Мы увидим, насколько это грубая оценка, когда познакомимся с центральной предельной теоремой.
Пример 47.
Пусть
— последовательность случайных величин, дисперсии которых ограничены одной и той же постоянной С, а ковариации любых с. в. и ( ), не являющихся соседними в последовательности, равны нулю. Удовлетворяет ли эта последовательность ЗБЧ?Воспользуемся неравенством (13) и свойством 12:
Но для i < j, по условию,
, если . Следовательно, в сумме равны нулю все слагаемые кроме, может быть, (их ровно n -1 штука).Оценим каждое из них, используя одно из свойств коэффициента корреляции
(по условию задачи)при
, т.е. последовательность удовлетворяет ЗБЧ.... Из этой первой лекции по теории вероятностей я запомнил только полузнакомый термин «математическое ожидание». Незнакомец употреблял этот термин неоднократно, и каждый раз я представлял себе большое помещение, вроде зала ожидания, с кафельным полом, где сидят люди с портфелями и бюварами и, подбрасывая время от времени к потолку монетки и бутерброды, сосредоточенно чего-то ожидают. До сих пор я часто вижу это во сне. Но тут незнакомец оглушил меня звонким термином «предельная теорема Муавра — Лапласа» и сказал, что все это к делу не относится.
Аркадий и Борис Стругацкие, Стажеры
Раздел 14. ЦПТ (центральная предельная теорема)
14.1 Как быстро
сходится к ?Пусть, как в законе больших чисел в форме Чебышёва,
— сумма n независимых и одинаково распределенных величин с конечной дисперсией. Тогда, в силу ЗБЧ, с ростом n. Или, после приведения к общему знаменателю,Если при делении на n мы получили в пределе нуль (в смысле некоторой, все равно какой, сходимости), резонно задать себе вопрос: а не слишком ли на «много» мы поделили? Нельзя ли поделить на что-нибудь, растущее к бесконечности медленнее, чем n, чтобы получить в пределе не нуль (и не бесконечность, само собой)?
Можно поставить этот вопрос по-другому. Вот последовательность, стремящаяся (как-то) к нулю. Можно ли ее домножить на что-либо растущее, чтобы «погасить» это стремление к нулю? Получив, тем самым, что-нибудь конечное и отличное от нуля в пределе?
Оказывается, что уже
, или, что, то же самое, , не сходится к нулю. Распределение этой, зависящей от n, случайной величины становится все более похоже на нормальное распределение! Можно считать, что такая последовательность сходится к случайной величине, имеющей нормальное распределение, но сходится не по вероятности, а только в смысле сходимости распределений, или «слабой сходимости».