14.2 Слабая сходимость
Пусть задана последовательность с. в.
Определение 50. Говорят, что последовательность с. в.
Иначе говоря, слабая сходимость — это поточечная сходимость функций распределения во всех точках непрерывности предельной функции распределения.
Свойство 15. Если
Следующее важное свойство уточняет отношения между сходимостями.
Свойство 16.
1. Если
2. Если
Доказательство.Докажем, что слабая сходимость к постоянной влечет сходимость по вероятности.
Пусть
при любом x, являющемся точкой непрерывности предельной функции
Возьмем произвольное
(сужаем событие под знаком вероятности)
Осталось заметить, что
Следующее свойство приводит пример операций, которые можно применять к слабо сходящимся последовательностям — скажем, домножать их на последовательности, сходящиеся по вероятности к постоянным величинам.
Свойство 17.
1. Если
2. Если
Несколько содержательных примеров слабой сходимости мы рассмотрим в следующей главе. Но основной источник слабо сходящихся последовательностей и необычайно мощное и универсальное средство для асимптотического анализа распределения сумм независимых и одинаково распределенных случайных величин предоставляет нам ЦЕНТРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА
14.3 Центральная предельная теорема
Мы будем называть следующее утверждение «ЦПТ А. М. Ляпунова» (1901), но сформулируем теорему Ляпунова только в частном случае — для последовательности независимых и одинаково распределенных случайных величин.
Теорема 31 (ЦПТ).
Пусть
Пользуясь определением и свойствами слабой сходимости, и заметив, что функция распределения
Следствие 18. Пусть
Для любых вещественных x < y при
Для любых вещественных x < y при
Для любых вещественных x < y при
Если
Замечание 19. Еще раз напомним, что функция распределения стандартного нормального закона ищется либо по соответствующей таблице в справочнике, либо с помощью какого-либо программного обеспечения, но никак не путем нахождения первообразной.
14.4 Предельная теорема Муавра — Лапласа
Получим в качестве следствия из ЦПТ предельную теорему Муавра — Лапласа (P. S. Laplace, 1812; A. de Moivre, 1730). Подобно ЗБЧ Бернулли, предельная теорема Муавра – Лапласа — утверждение только схемы Бернулли.
Теорема 32 (Предельная теорема Муавра — Лапласа).
Пусть А— событие, которое может произойти в любом из n независимых испытаний с одной и той же вероятностью p = P(A). Пусть
14.5 Примеры использования ЦПТ
Пример 48.
Монета подбрасывается 10 000 раз. Оценить вероятность того, что частота выпадения герба отличается от вероятности более чем на одну сотую.
Требуется найти