Согласно ЦПТ или предельной теореме Муавра — Лапласа, последовательность
слабо сходится к стандартному нормальному распределению. Рассмотрим произвольную с. в.
, имеющую распределение .Равенство
следует из свойства 10.Замечание 20. Центральной предельной теоремой пользуются для приближенного вычисления вероятностей, связанных с суммами большого числа независимых и одинаково распределенных величин. При этом распределение центрированной и нормированной суммы заменяют на стандартное нормальное распределение.
Следующий результат позволяет оценить погрешность приближения в ЦПТ.
Теорема 33 (Неравенство Берри – Эссеена).
В условиях ЦПТ для любого х ÎR (то есть равномерно по х)
Замечание 21. Про постоянную С известно, что:
а) в общем случае С не превышает 0,7655 (И. С. Шиганов),
б) погрешность приближения наиболее велика, если слагаемые
имеют распределение Бернулли, и С в этом случае не меньше, чем (C. G. Esseen, Б. А. Рогозин),в) как показывают расчеты, можно смело брать в качестве С число 0,4 — даже для слагаемых с распределением Бернулли, особенно при малых n, когда и это значение постоянной оказывается слишком грубой оценкой.
Подробный обзор можно найти в монографии В.М.Золотарева «Современная теория суммирования независимых случайных величин», стр. 264– 291.
Продолжение примера 48. Проверьте, что для с. в.
с распределением БернуллиПоэтому разница между левой и правой частями приближенного равенства в примере 48 при
и не превышает величинытак что искомая вероятность
не больше, чем 0,0456+0,004. Уместно сравнить этот ответ с оценкой, полученной с помощью ЗБЧ в примере 48.Пример 49.
Пусть
— независимые и одинаково распределенные случайные величины с конечной и ненулевой дисперсией, сумму первых n случайных величин. При каких с имеет или не имеет место сходимостьСогласно ЗБЧ, последовательность
сходится по вероятности (а, следовательно, и слабо) к . Слабая сходимость означает, что последовательность функций распределения сходится к функции распределения , если непрерывна в точке с (и ничего не означает, если разрывна в точке с). Ноесть функция распределения вырожденного закона и непрерывна в любой точке с, кроме
. Итак, первый вывод: сходимость имеет место для любого с, кроме, возможно, . Убедимся, что для такой сходимости быть не может. Пусть . Согласно ЦПТ,Аналогично, кстати, ведет себя и вероятность
. Она тоже стремится к 1/2, а не к