Смекни!
smekni.com

Курс лекций по теории вероятностей (стр. 7 из 20)

Теорема 14. Пусть P(τ = k) = pqk-1. Тогда для произвольных n, k³ 0

P(τ > n+k\ τ > n) = P(τ > k)

Данному равенству можно придать следующее звучание: если известно, что устройство проработало без отказов n часов, то вероятность ему работать еще не менее k часов точно такая же, как вероятность проработать не менее k часов для нового устройства.

Можно прочесть эту формулу и так: вероятность работающему устройству проработать еще сколько-то часов не зависит от того момента, когда мы начали отсчет времени, или от того, сколько уже работает устройство.

Доказательство. По определению условной вероятности,

(4)

Последнее равенство следует из того, что событие {τ > n+k} влечет событие {τ > n}, так что пересечение этих событий есть {τ > n+k}. Найдем для произвольного m³ 0вероятность P(τ > m).


Можно также заметить, что событие {τ > m} означает, что в схеме Бернулли первые m испытаний завершились «неудачами», а это событие имеет вероятность как раз qm.

Возвращаясь к (4), получим


5.4 Приближение гипергеометрического распределения биномиальным

Рассмотрим урну, содержащую N шаров, из которых K шаров — белые, а оставшиеся N-K шаров — черные. Из урны наудачу (без возвращения) выбираются nшаров. Вероятность PN,K(n, k)того, что будет выбрано ровно k белых и n-k черных шаров, находится по формуле (см. определение 8 гипергеометрического распределения вероятностей):


Если число шаров в урне очень велико, то извлечение одного, двух, трех шаров почти не меняет пропорцию белых и черных шаров в урне, так что вероятности PN,K(n, k) не очень отличаются от вероятностей в процедуре выбора с возвращением

P(получить ровно k белых шаров при выборе n шаров с возвращением) =

Сформулируем нашу первую предельную теорему.


Теорема 15. Если N → ∞ и K → ∞ так, что K/NpÎ (0, 1) то для любых фиксированных n, 0<=k<=n

5.5 Независимые испытания с несколькими исходами

Рассмотрим следующий пример, когда из двух очень похожих вопросов на один можно ответить, пользуясь формулой Бернулли, а для другого этой формулы оказывается недостаточно:

Пример20. Игральная кость подбрасывается 15 раз. Найти вероятности следующих событий:

а) выпадет ровно 10 шестерок; б) выпадет ровно 10 шестерок и три единицы.

а) есть 15 испытаний схемы Бернулли с вероятностью успеха 1/6 (выпадение шестерки). Вероятность десяти успехов в 15 испытаниях равна

б) здесь каждое испытание имеет три, а не два исхода: выпадение шестерки, выпадение единицы, выпадение остальных граней. Воспользоваться формулой для числа успехов в схеме Бернулли не удается — перед нами уже не схема Бернулли.

Осталось изобрести формулу для подсчета вероятности каждому исходу в нескольких независимых испытаниях выпасть нужное число раз, если в одном испытании возможно не два, а более исходов.

Пусть в одном испытании возможны m исходов. Обозначим их цифрами 1, 2, …m. Пусть исход i в одном испытании случается с вероятностью рi, 1 ≤ im и

Обозначим через Р(n1,n2,…,nm) вероятность того, что в n = n1+ n2+ …+nm независимых испытаний исход 1 появился n1, раз, исход 2 – n2 раз,…

Теорема 16. Для любого n и любых целых n10nm0 таких, что n1+ n2+ …+nm = n, верна формула:

Доказательство. Рассмотрим один элементарный исход, благоприятствующий выпадению n1 единиц, n2 двоек, … , nmраз m-ок:

Это результат n экспериментов, когда все нужные исходы появились в некотором заранее заданном порядке. Вероятность такого результата n независимых испытаний равна

Все остальные благоприятные исходы отличаются лишь расположением чисел 1, 2, …m на n местах. Число таких исходов равно числу способов расставить на n местах n1единиц, n2 двоек, , … , nmраз чисел m, то есть

Теперь мы можем вернуться к примеру 20(б) и выписать ответ: так как вероятности выпадения шестерки и единицы равны 1/6, а вероятность третьего исхода (выпали любые другие грани) равна 4/6, то вероятность получить 10 шестерок, 3 единицы и еще 2 других очка равна

5.6 Теорема Пуассона для схемы Бернулли

Предположим, нам нужна вероятность получить не менее десяти успехов в 1000 испытаний схемы Бернулли с вероятностью успеха 0.003. Вероятность этого события равна любому из следующих выражений:

и вычисление даже одного слагаемого в каждом из этих выражений весьма проблематично.

Сформулируем теорему о приближенном вычислении вероятности какого-либо числа успехов в большом числе испытаний схемы Бернулли с маленькой вероятностью успеха. Термин «большое число» должен означать n → ∞. Если при этом p = pn→ 0,то, очевидно, вероятность получить любое конечное число успехов при растущем числе испытаний стремится к нулю. Необходимо чтобы вероятность успеха p = pn→ 0 одновременно с ростом числа испытаний. Но от испытания к испытанию вероятность успеха меняться не может (см. определение схемы Бернулли).

Поэтому рассмотрим «схему серий»: есть

одно испытание ○ с вероятностью успеха p1

два испытания ○ , ○ с вероятностью успеха p2

n испытаний ○ , … , ○ с вероятностью успеха pn

Вероятность успеха меняется не внутри одной серии испытаний, а от серии к серии, когда меняется общее число испытаний. Обозначим черезvnчисло успехов вn-той серии испытаний.

Теорема 17 (Теорема Пуассона).

Пусть n → ∞ , pn→ 0 так, что npnλ > 0. Тогда для любого k 0 вероятность получить k успехов в nиспытаниях схемы Бернулли с вероятностью успеха pn стремится к величине

(5)

дляn → ∞ , pn→ 0 так, что npnλ

Определение 22. Пусть λ > 0— некоторая постоянная. Набор чисел

называется распределением Пуассона с параметром λ.

Пользуясь теоремой 17, можно приближенно посчитать вероятность получить не менее десяти успехов в 1000 испытаний схемы Бернулли с вероятностью успеха 0.003, с вычисления которой мы начали. Поскольку n = 1000 «велико», а pn = 0.003 «мало», то, взяв λ = npn= 3 , можно написать приближенное равенство

(6)

Осталось решить, а достаточно ли n=103 «велико», а pn= 0.003 «мало», чтобы заменить точную вероятность P(vn = k)на приближенное значение

Для этого нужно уметь оценивать разницу между этими двумя вероятностями.

Теорема 18 (Теорема Пуассона с оценкой погрешности).

Пусть AÍ {0, 1, …, n} — произвольное множество целых неотрицательных чисел, vn — число успехов в n испытаниях схемы Бернулли с вероятностью успеха p, λ = np. Тогда

Таким образом, теорема 18 предоставляет нам возможность самим решать, достаточно ли n «велико», а p «мало», руководствуясь полученной величиной погрешности.

Какова же погрешность в формуле (6)?