Смекни!
smekni.com

Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства (стр. 16 из 20)

равны некоторому неотрицательному числу х, тогда остается N-m чисел и пусть они равны неотрицательному числу у, т.е.

x1 = x2 = … = xm = x

xm+1 = xm+2 = … = xn = y

В этом случае теорема о среднем арифметическом и среднем геометрическом для чисел x1, x2, … , xn примет вид

или

Здесь n – любое целое число, а m – целое число значения которого заключены в пределах 1 £ m £ n – 1. Отсюда следует, что число m/n может быть любой рациональной дробью r, принадлежащей интервалу 0 < r < 1. Теперь последнее неравенство можно переписать так:

rx + (1 – r)y ³ x r y1-r (3)

Это неравенство имеет место для любых неотрицательных чисел х и у и для любой дроби r, значения которой заключены между 0 и 1. Равенство здесь достигается тогда и только тогда, когда х = у.

Обозначим число r через 1/р; поскольку 0 < r < 1, то p > 1. Отсюда

. Пусть
, тогда
и

В этих обозначениях неравенство (3) принимает вид

(4)

С целью исключить из рассмотрения дробные показатели степени положим

х = ар, у = bр.

При этом неравенство (4) принимает вид

, где a и b – неотрицательные числа, а р и q – такие рациональные числа, что
. Равенство здесь достигается тогда и только тогда, когда ар = bр. Итак, мы вывели неравенство (2).

Положим

затем

и т. д. (как в доказательстве неравенство Коши) и сложим неравенства, получающиеся после последовательных подстановок этих значений в (2). При этом получим

(5)

Используя равенство

, получаем неравенство, равносильное (1). Равенство в (5) достигается тогда и только тогда, когда все отношения bi/ai равны между собой.

Неравенство треугольника.

Из геометрии мы знаем, что сумма длин двух сторон треугольника не меньше длины его третьей стороны. Посмотрим, как можно выразить эту теорему алгебраически.

Рассмотрим треугольник ORP, расположенный так, как показано на рисунке.


Геометрическое неравенство ОР + PR ³ OR равносильно алгебраическому неравенству треугольника

(1)

Для доказательства возведем обе части неравенства (1) в квадрат, при этом мы придем к неравенству, равносильному (1):

Легко видеть, что последнее неравенство в свою очередь равносильно неравенству:

Но это неравенство является простым следствием неравенства Коши

,

что и доказывает неравенство треугольника.

Равенство в неравенстве треугольника, как и в неравенстве Коши достигается тогда и только тогда, когда х1 = кх2 и у1 = ку2, где к – неотрицательный коэффициент пропорциональности.

Доказательство неравенства треугольника можно обобщить, следуя по тому же пути, что и при выводе неравенства Гёльдера, а именно доказать, что неравенство

имеет место для любых действительных значений xi, yi. Равенство достигается в том и только том случае, когда числа xi и yi пропорциональны и коэффициент пропорциональности положителен.

Рассмотрим еще одно доказательство неравенства треугольника, которое можно использовать также и для получения более общих результатов. Имеет место тождество

1 + х2)2 + (у1 + у2)2 = х11 + х2) + у11 + у2) + х21 + х2) + у21 + у2)

Неравенство Коши в форме, использующей квадратные корни, применим по очереди к двум выражениям:

х11 + х2) + у11 + у2) и

х21 + х2) + у21 + у2).

Мы получим

12 + у12)1/2 [(х1 + х2)2 + (у1 + у2)2]1/2 ³ х11 + х2) + у11 + у2) и

22 + у22)1/2 [(х1 + х2)2 + (у1 + у2)2]1/2 ³ х21 + х2) + у21 + у2)

Сложим эти два неравенства

[(х12 + у12)1/2 + (х22 + у22)1/2]*[(х1 + х2)2 + (y1 + у2)2]1/2³ (х1 + х2)2 + (у1 + у2)2

разделив обе части на общий множитель

[(х1 + х2)2 + (у1 + у2)2]1/2 ,

будем иметь

12 + у12)1/2 + (х22 + у22)1/2 ³ [(х1 + х2)2 + (у1 + у2)2]1/2

таким образом, мы еще раз доказали неравенство треугольника. Равенство опять будет иметь место тогда и только тогда, когда х1 = кх2 и у1 = ку2, где к – неотрицательный коэффициент пропорциональности, другими словами, тогда и только тогда, когда три точки О, Р и Q лежат на одной прямой, причем точки Р и Q расположены по одну сторону от точки О.

Неравенство Минковского.

Неравенство Минковского утверждает, что для любых неотрицательных чисел х1, у1, х2, у2 при любом р > 1

1р + у1р)1/р + (х2р + у2р)1/р ³ [(х1 + х2)р + (у1 + у2)р]1/р (1)

Неравенство треугольника составляет частный случай неравенства Минковского для р = 2 и их доказательства подобны.

Запишем тождество

1 + х2)р + (у1 + у2)р = [х11 + х2)р-1 + у11 + у2)р-1] ×

× [х21 + х2)р-1 + у21 + у2)р-1]

и применим неравенство Гёльдера к каждому члену правой части этого тождества. В результате получим:

1р + у1р)1/р= [ (х1 + х2)(р-1)q + (у1 + у2)(р-1)q]1/q ³ х11 + х2)р-1 + у11 + у2)р-1

и

2р + у2р)1/р= [ (х1 + х2)(р-1)q + (у1 + у2)(р-1)q]1/q ³ х21 + х2)р-1 + у21 + у2)р-1

Так как

, то (p – 1)q = p. Складывая последние два неравенства, имеем

[(х1 + х2)р + (у1 + у2)р]1/q[(х1р + у1р)1/р + (х2р + у2р)1/р] ³ (х1 + х2)р + (у1 + у2)р

Разделив затем на [(х1 + х2)р + (у1 + у2)р]1/q

получим

2р + у2р)1/р + (х1р + у1р)1/р ³ [(х1 + х2)р + (у1 + у2)р]1-1/q

Так как

, то последнее неравенство полностью совпадает с требуемым неравенством Минковского (1).

Знак равенства в неравенстве (1) имеет место тогда и только тогда, когда точки (х1 у1) и (х2 у2) лежат на одной прямой с точкой (0, 0).

Аналогично обобщением неравенства Гёльдера и неравенства треугольника можно получить и неравенство Минковского для двух систем их n неотрицательных чисел х1, х2, … , хn и у1, у2, … , уn. Оно имеет вид:

1р + х2р +… хnр ]1/р + [у1р + у2р+… + уnр] 1/р ³

³ [(х1 + у1)р + (х2 + у2)р + … +(хn + уn)р]1/р , где р ³ 1

При p < 1 знак неравенства следует изменить на обратный.

ЗАКЛЮЧЕНИЕ.

В дипломной работе изучен и дан анализ самостоятельной работе учащихся наряду с другими формами организации познавательной деятельности. На основе изученной психолого-педагогической литературы дается характеристика этих форм, разработана методика применения самостоятельной работы вместе с иными формами организации познавательной деятельности на факультативных занятиях в выпускных классах средней школы, изучены учебные возможности учащихся в экспериментальной группе, проведена опытно- экспериментальная работа по включению самостоятельной работы школьников в процесс обучения.