Смекни!
smekni.com

Шпаргалка по Высшей математике 3 (стр. 8 из 21)

При этом предполагается, что функция f(x) определена в окрестности бесконечности.

Записывают:

Аналогично можно определить пределы

для любого х>M и

для любого х<M.

Число А называется пределом функции в точке хо (или при х→хо), если для любого положительного ε найдется такое положительное число δ, что для все х¹хо, удовлетворяющих неравенству |х-хо|<δ, выполняется неравенство |ƒ(х)-А|<ε.

Предел функции при х ®

Пусть функция у=ƒ(х) определена в промежутке (-∞;∞). Число А называется пределом функции ƒ(х) при х→, если для любого положительного числа ε существует такое число М=М()>0, что при всех х, удовлетворяющих неравенству |х|>М выполняется неравенство |ƒ(х)-А|<ε. Коротко это определение можно записать так:

Основные теоремы о пределах.

Теорема 1.

, где С = const.

Следующие теоремы справедливы при предположении, что функции f(x) и g(x) имеют конечные пределы при х®а.

Теорема 2.

Доказательство этой теоремы будет приведено ниже.

Теорема 3.

Следствие.

Теорема 4.

при

Теорема 5. Если f(x)>0 вблизи точки х = а и

, то А>0.

Аналогично определяется знак предела при f(x) < 0, f(x) ³ 0, f(x) £ 0.

Теорема 6. Если g(x) £ f(x) £ u(x) вблизи точки х = а и

, то и
.

Определение. Функция f(x) называется ограниченной вблизи точки х = а, если существует такое число М>0, что ïf(x)ï<M вблизи точки х = а.

Теорема 7. Если функция f(x) имеет конечный предел при х®а, то она ограничена вблизи точки х = а.

Доказательство. Пусть

, т.е.
, тогда

или

, т.е.

где М = e + ïАï

Теорема доказана.

Пусть функция у=ƒ (х) определена в некоторой окрестности точки хо, кроме, быть может, самой точки хо.

Сформулируем два, эквивалентных между собой, определения предела функции в точке.

22. Бесконечно малые и бесконечно большие величины.

Функция f(x) называется бесконечно малой при х®а, где а может быть числом или одной из величин ¥, +¥ или -¥, если

.

Бесконечно малой функция может быть только если указать к какому числу стремится аргумент х. При различных значениях а функция может быть бесконечно малой или нет.

Пример. Функция f(x) = xn является бесконечно малой при х®0 и не является бесконечно малой при х®1, т.к.

.

Теорема. Для того, чтобы функция f(x) при х®а имела предел, равный А, необходимо и достаточно, чтобы вблизи точки х = а выполнялось условие

f(x) = A + a(x),

где a(х) – бесконечно малая при х ® а (a(х)®0 при х ® а).

Свойства бесконечно малых функций:

1) Сумма фиксированного числа бесконечно малых функций при х®а тоже бесконечно малая функция при х®а.

2) Произведение фиксированного числа бесконечно малых функций при х®а тоже бесконечно малая функция при х®а.

3) Произведение бесконечно малой функции на функцию, ограниченную вблизи точки х = а является бесконечно малой функцией при х®а.

4) Частное от деления бесконечно малой функции на функцию, предел которой не равен нулю есть величина бесконечно малая.

Используя понятие бесконечно малых функций, приведем доказательство некоторых теорем о пределах, приведенных выше.

Доказательство теоремы 2. Представим f(x) = A + a(x), g(x) = B + b(x), где

, тогда

f(x) ± g(x) = (A + B) + a(x) + b(x)

A + B = const, a(х) + b(х) – бесконечно малая, значит

Теорема доказана.

Доказательство теоремы 3. Представим f(x) = A + a(x), g(x) = B + b(x), где

, тогда

A×B = const, a(х) и b(х) – бесконечно малые, значит

Теорема доказана.

Бесконечно большие функции и их связь с бесконечно малыми.

Определение. Предел функции f(x) при х®а, где а- число, равен бесконечности, если для любого числа М>0 существует такое число D>0, что неравенство

ïf(x)ï>M

выполняется при всех х, удовлетворяющих условию

0 < ïx - aï < D

Записывается

.

Собственно, если в приведенном выше определении заменить условие ïf(x)ï>M на f(x)>M, то получим:

а если заменить на f(x)<M, то:

Определение. Функция называется бесконечно большой при х®а, где а – чосли или одна из величин ¥, +¥ или -¥, если

, где А – число или одна из величин ¥, +¥ или -¥.

Связь бесконечно больших и бесконечно малых функций осуществляется в соответствии со следующей теоремой.

Теорема. Если f(x)®0 при х®а (если х®¥ ) и не обращается в ноль, то

Сравнение бесконечно малых функций.

Пусть a(х), b(х) и g(х) – бесконечно малые функции при х ® а. Будем обозначать эти функции a, b и g соответственно. Эти бесконечно малые функции можно сравнивать по быстроте их убывания, т.е. по быстроте их стремления к нулю.

Например, функция f(x) = x10 стремится к нулю быстрее, чем функция f(x) = x.

Определение. Если

, то функция a называется бесконечно малой более высокого порядка, чем функция b.

Определение. Если

, то a и b называются бесконечно малыми одного порядка.

Определение. Если

то функции a и b называются эквивалентными бесконечно малыми. Записывают a ~ b.

Пример. Сравним бесконечно малые при х®0 функции f(x) = x10 и f(x) = x.

т.е. функция f(x) = x10 – бесконечно малая более высокого порядка, чем f(x) = x.

Определение. Бесконечно малая функция a называется бесконечно малой порядка k относительно бесконечно малой функции b, если предел

конечен и отличен от нуля.

Однако следует отметить, что не все бесконечно малые функции можно сравнивать между собой. Например, если отношение

не имеет предела, то функции несравнимы.

Пример. Если

, то при х®0
, т.е. функция a - бесконечно малая порядка 2 относительно функции b.

Пример. Если

, то при х®0
не существует, т.е. функция a и b несравнимы.

23. Первый и второй замечательные пределы.

, где P(x) = a0xn + a1xn-1 +…+an,