Смекни!
smekni.com

Синтез и свойства 4-замещенных 5Н-123-дитиазолов (стр. 15 из 26)

Схема 44

Предлагаемая нами схема реакций 1,2,3-дитиазолов с аминами достаточно хорошо объясняет разнообразие образующихся в реакции продуктов.

2.2.4 Реакции 4-замещенных 5H-1,2,3-дитиазолов с этилатом натрия

С целью изучения свойств 4-замещенных 5Н-1,2,3-дитиазолов при действии более сильных нуклеофилов мы исследовали их реакции с этилатом натрия. В литературе не описано взаимодействие 1,2,3-дитиазолов с алкоголятами щелочных металлов. Мы показали, что этилат натрия, как более сильный нуклеофил, в отличие от аминов вступает во взаимодействие не только с тионами 6 и кетонами 4, но и с иминами 7. Также было показано, что -5-тиоксо- 6, -5-оксо- 4 и -5-иминопроизводные 7 по-разному ведут себя в реакциях с этилатом натрия, что оказалось достаточно неожиданным.

2.2.4.1 Реакции 4-замещенных 5H-1,2,3-дитиазол-5-тионов 6 с этилатом натрия

Исследование реакции 4-фенил-5Н-1,2,3-дитиазол-5-тиона 6а с этилатом натрия в этаноле показало, что процесс полностью заканчивается в течение 1.5 часов при комнатной температуре с образованием продукта, для которого на основании данных элементного анализа и масс-спектроскопии была установлена брутто-формула С12Н15NO2S2, свидетельствующая о том, что продукт образуется в результате замещения атома серы в исходном соединении 6a на две этоксигруппы. Спектроскопия 13С ЯМР показала отсутствие пиков в области 160-220 м.д., что говорит об отсутствии фрагмента С=S в продукте. Таким образом, мы сделали вывод, что именно экзоциклический атом серы был вовлечен в превращение. Нами была предложена структура продукта 27а как 4-фенил-5,5-диэтокси-5H-1,2,3-дитиазола.

К сожалению, доказать строение 27а с помощью метода РСА не удалось из-за того, что оно является жидким и при замерзании стеклуется, а не кристаллизуется.

Для доказательства наличия дитиазольного цикла в продукте 27а, в ИНЭОС РАН был проведен сравнительный анализ спектров ИК- и КР-спектроскопии 1,2,3-дитиазолонов 4a,g, тионов 6a,g, имина 7a и соединения 27а.


Известно, что валентное колебание связи S–S имеет частоту ~460-500 см-1. В спектрах КР изученных нами соединений в области 490 см- наблюдается интенсивная линия для соединений 4g, 4a, 6g и линия небольшой интенсивности для 7a, 6a, 27а (см. Таблицу 5). Это колебание также проявляется в ИК-спектрах в виде полосы средней интенсивности. Другие колебания пятичленного цикла для 4a, 7a, 6a, 27а не удается идентифицировать однозначно, поскольку с ними перекрываются многочисленные линии деформационных колебаний бензольного кольца. Однако, линии в области 500-670 см-1 можно отнести к смешанным по форме колебаниям с участием связей N–S и C–S (Таблица 5).

Таблица 5. Характеристические частоты в ИК и КР спектрах 4a, 6a, 4g, 6g, 7a, 27а и их отнесение.

Соединение S-S C-S + N-S C-S + N-S C-C + C-C’ C=N C=X, (X=O,S)
КР 467 512 634 1262 1576 1640,1655
ИК 468 508 634 1260 1574 1640,1656
КР 499 569 604 1270 1140,1132
ИК 500 565 611 1268 1136
4g КР 488 541 661 1227 1551 1644,1676
ИК 490 540 665 1230 1555 1645,1680
6g КР 486 522 599 1248 1501 1085
ИК 486+ 522 600 1250 1498 1098
7a КР 488 528 633 1280 1500,1598
ИК 482 528 632 1276 1588,1604
27а КР 492 569 622 1266 1538
ИК 492 568 620 1268 1536

Таким образом, данные ИК- и КР-спектроскопии подтвердили наличие связи S-S в соединении 27а, о чем свидетельствовует полоса 492 см-1, присутствующая в обоих спектрах, что служит подтверждением сохранения дитиазольного цикла в соединении 27а.

Главным условием получения продукта 27а с максимальным выходом является использование пятикратного избытка этилата натрия. При использовании меньшего количества этилата натрия в реакционной смеси остается непрореагировавший тион 6а. Увеличение избытка EtONa до 6-, 7-кратного и далее уменьшает выход основного продукта.

Мы распространили найденные нами оптимальные для 6a условия на ряд других тионов 6. Во всех случаях 5,5-диэтоксипроизводные 27 были выделены с выходами от низких до умеренных (Схема 45).

Схема 45

В литературе известны аналогичные реакции алифатических, циклических и гетроциклических тионов с алкоголятами щелочных металлов приводящие к геминальным диалкоксипроизводным [121-125].

Объяснить образование соединений 27 можно, если предположить, что первичная атака этилат-аниона идет по атому углерода в положении 5. Последующее расщепление цикла по связи S-S, образование тиоэфира 28 и повторная атака этилат-аниона приводят к промежуточному диэтоксисульфиду 29, который способен к внутримолекулярной циклизации в 1,2,3-дитиазол за счет нуклеофильной атаки сульфидного фрагмента (Схема 46).

Схема 46

5,5-Диалкокси-5Н-1,2,3-дитиазолы 27 в литературе не описаны. Из других спиросоединений 1,2,3-дитиазолов известны лишь 4 представителя, которые получают реакцией β-кетоенаминов с монохлоридом серы [126].

2.2.4.2 Реакции 4-замещенных 5H-1,2,3-дитиазол-5-онов 4 с этилатом натрия

Исследование реакции кетона 4a с этилатом натрия показало, что он более активен, чем тион 6a. Так, 4a полностью вступает в реакцию с этилатом натрия в абсолютном этаноле при температуре 0 oС. После кратковременной выдержки реакционной смеси при 0 oС был выделен этиловый эфир 2-оксофенилуксусной кислоты 30а, с выходом 46%. Использование избытка этилата натрия, превышающего пятикратный, приводит к уменьшению выхода эфира, а меньшее количество - оставляет часть кетона 6 непрореагировавшим. Распространение оптимальных для 4a условий на другие кетоны 4 привело к получению эфиров 2-оксоуксусных кислот 30 с умеренными и хорошими выходами (Схема 47).

Схема 47

Эфиры -оксоуксусных кислот 30 являются хорошо известным классом соединений. В литературе описаны соединения 30a-e [127-131]. Спектральные данные полученных нами веществ полностью совпадают с описанными в литературе.

Строение продуктов 30 позволяет предположить, что и в этом случае, так же как и в реакциях с тионами, происходит атака по атому углерода С5. Мы предположили, что на первой стадии происходит раскрытие цикла с последующим образованием дисульфида 31. Вероятно, дальнейшая атака этилат-аниона, могла бы привести, по аналогии с превращением описанным в предыдущем разделе, к 1,2,5-оксатиазолам 32. Мы предполагаем, что этого не происходит, вероятно, из-за нестабильности 1,2,5-оксатиазола 32. Следует отметить, что гетероциклические соединения типа 32 неизвестны в литературе. Поэтому дисульфид 31, по-видимому, отщепляет двухатомную серу с образованием имина 33, который далее гидролизуется в условиях реакции до устойчивого эфира оксокислоты 30 (Схема 48), как это уже было описано для реакции кетонов 4 со вторичными аминами (см. раздел 2.2.3 Схема 44).

Схема 48

Необходимо отметить, что атакующей частицей в этой реакции является, очевидно, этилат-анион, а не гидроксид-анион и поэтому количество воды в реакционной среде должно быть минимизировано. Так, на примере кетона 4а показано, что проведение реакции с гидроксидом натрия в 80%-ном водном этаноле приводит к разложению исходного соединения; выделить индивидуальные продукты из этой реакционной смеси нам не удалось (Схема 49).

Схема 49


2.2.4.3 Реакции 4-замещенных 5H-1,2,3-дитиазол-5-фенилиминов 7 с этилатом натрия

Взаимодействие имина 7a с этилатом натрия в абсолютном этаноле было исследовано в различных температурных условиях. Поскольку имины 7 имеют ограниченную растворимость в этаноле, взаимодействие идет крайне медленно и процесс при комнатной температуре с десятикратным избытком этилата натрия не проходит до конца при выдержке в течении суток. Однако, при кипячении реакция протекает до конца в течение 40 минут, и приводит к образованию N-фенил--оксотиоацетамида 34а. При этом с максимальным выходом 40% реакция идет при пятикратном избытке этилата натрия. При кипячении с трех- и четырехкратными избытками EtONa в реакционной смеси остается непрореагировавший имин 7. Избыток нуклеофила, превышающий пятикратный, существенно понижает выход продукта. Оптимальные условия для реакции имина 7а с этилатом натрия – кипячение в абсолютном этаноле в течение 40 минут, были распространены на другие имины 7, что позволило получить N-фенил--оксотиоацетамиды 34 с умеренными выходами (Схема 50).