Смекни!
smekni.com

Бертран Рассел. Человеческое познание его сферы и границы (стр. 89 из 129)

Аксиома VI есть "дизъюнктивная" аксиома. В вышеприведенном примере она дает шанс, что по крайней мере одна из карт будет красная. Она говорит, что шанс, что по крайней мере одна будет красная, есть шанс, что первая — красная, плюс шанс, что вторая — красная (когда не дано, будет ли первая красной или не будет), минус шанс, что обе — красные. Это равняется 1/2+1/2—1/2х25/51, если использовать результат, полученный выше с помощью конъюнктивной аксиомы.

Ясно, что с помощью аксиом V и VI, при том условии, что даны отдельные вероятности любой ограниченной совокупности событий, мы можем исчислить вероятность наступления их всех или по крайней мере вероятность наступления одного из них.

Из конъюнктивной аксиомы следует, что

Это называется "принципом обратной вероятности". Ее полезность может быть иллюстрирована следующим образом. Пусть p будет какой-либо общей теорией, а q — экспериментальным данным, относящимся к p. Тогда p/h есть вероятность теории p в отношении ранее известных данных, q /h — вероятность q в отношении ранее известных данных и q (p и h) — вероятность q, если p истинно. Таким образом, вероятность теории p после того, как q установлено, получается посредством умножения прежней вероятности p на вероятность q при данном p и деления на прежнюю вероятность q. В самом благоприятном случае теория p будет предполагать q, так что q/ (p и h) =1. В этом случае

Это значит, что новое данное q повышает вероятность p пропорционально предшествующей невероятности q. Другими словами, если наша теория предполагает нечто весьма неожиданное, а это неожиданное затем происходит, то это сильно повышает вероятность нашей теории.

Этот принцип может быть иллюстрирован открытием Нептуна, рассматриваемым как подтверждение закона тяготения. Здесь p — закон тяготения, h — все относящиеся к делу факты, известные до открытия Нептуна, q — факт обнаружения Нептуна в определенном месте. Тогда q /h было предварительной вероятностью, что до сего времени неизвестная планета будет найдена в определенной небольшой области неба. Пусть она была равна m/n. Тогда после открытия Нептуна вероятность закона тяготения стала в n/m раз большей, чем раньше.

Ясно, что этот принцип имеет большое значение в оценке роли нового свидетельства в пользу вероятности научной теории. Мы найдем, однако, что он доказывает нечто разочаровывающее и не дает таких хороших результатов, на которые можно было бы надеяться.

Существует имеющее большое значение предложение, иногда называемое теоремой Бейеса, которая имеет следующий вид. Пусть р1, p2, ..., Pn будут n взаимно исключающих друг друга возможностей, причем известно, что какая-то одна из них истинна; пусть h будет означать общие данные, а q — какой-либо относящийся к делу факт. Мы хотим узнать вероятность одной возможности p, при данном q, когда мы знаем вероятность каждого P1 до того, как стало известным q, a также вероятность q при данном р1 для каждого г. Мы имеем

Это предложение позволяет нам решить, например, следующую задачу: дано n +1 сумок, из которых первая содержит n черных шаров и ни одного белого, вторая содержит n — 1 черных шаров и один белый; r+1-я сумка содержит n — r черных шаров и r белых. Берется одна сумка, но неизвестно, какая именно; из нее вынимается m шаров, и оказывается, что все они белые; какова вероятность, что взята была сумка r? Исторически эта задача важна в связи с претензией Лапласа на доказательство индукции.

Возьмем, далее, закон больших чисел Бернулли. Этот закон устанавливает, что если на каждое число случаев шанс наступления определенного события есть p, то при данных любых двух сколько угодно малых числах e и s шанс, что, начиная с достаточно большого числа случаев, отношение случаев наступления события всегда будет отличаться от p больше, чем на величину s, будет меньше, чем e.

Поясним это с помощью примера с бросанием монеты. Допустим, что выпадение лицевой и оборотной сторон монеты одинаково вероятно. Это значит, что, по-видимому, после достаточно большого количества бросаний отношение выпадений лицевой стороной никогда не будет отличаться от 1/2 больше, чем на величину s, как бы мала ни была эта величина s; далее, как бы s не было мало, где бы то ни было после n бросаний, шанс такого отклонения от 1/2 будет меньше e, если только n достаточно большое.

Так как это предложение имеет большое значение в приложениях теории вероятности, например в статистике, постараемся получше освоиться с точным смыслом того, что утверждается в вышеприведенном примере с бросанием монеты. Прежде всего я утверждаю, что начиная с определенного числа их выпадения процент выпадения монеты лицевой стороной всегда будет, скажем, между 49 и 51. Допустим, что вы оспариваете мое утверждение и мы решаем проверить его эмпирически насколько только возможно. Значит, теорема утверждает, что чем дольше мы будем продолжать проверку, тем больше будет казаться, что мое утверждение порождено фактами и что по мере того, как число бросаний будет увеличиваться, эта его вероятность будет приближаться к достоверности как к пределу. Предположим, что с помощью этого эксперимента вы убеждаетесь, что начиная с некоторого числа бросаний процент выпадения лицевой стороной всегда остается между 49 и 51, но теперь я утверждаю, что начиная с некоторого большего числа бросаний этот процент будет всегда оставаться между 49,9 и 50,1. Мы повторяем наш эксперимент, и спустя некоторое время вы снова в этом убеждаетесь, хотя на этот раз, возможно, спустя большее время, чем прежде. После любого данного числа бросаний останется шанс, что мое утверждение не подтвердится, но этот шанс все время будет уменьшаться по мере того, как число бросаний будет увеличиваться, и может стать меньше любой приписанной ему величины, если бросание будет продолжаться достаточно долго.

Вышеприведенное предложение легко вывести из аксиом, но оно не может, конечно, быть адекватно проверено эмпирически, поскольку оно предполагает бесконечную последовательность испытаний. Если будет казаться, что испытания, которые мы можем осуществить, будут подтверждать его, то возражающий всегда сможет сказать, что они не показали бы этого, если бы мы продолжали испытание дальше; а если будет казаться, что они не подтверждают его, то защищающий теорему сможет точно так же сказать, что они еще не достаточно долго продолжали испытания. Теорему нельзя, таким образом, ни доказать, ни опровергнуть эмпирическим свидетельством.

Вышеприведенные предложения являются основными предложениями чистой теории вероятности, имеющими большое значение в нашем исследовании. Я хочу, однако, сказать еще кое-что по вопросу о a +1 сумках, каждая из которых содержит n белых и черных шаров, причем r+1-я сумка содержит r белых шаров и n — r черных шаров. Мы исходим из следующих данных: я знаю, что сумки содержат разные количества белых и черных шаров, но при этом нет никакого способа отличить эти сумки друг от друга по внешним признакам. Я выбираю одну сумку наудачу и вынимаю из нее один за другим m шаров, причем, вынимая эти шары, я не кладу их обратно в сумку. Оказывается, что все вынутые шары белые. Учитывая этот факт, я хочу знать две вещи: во-первых, каков шанс того, что я выбрал сумку, содержащую одни только белые шары? Во-вторых, каков шанс того, что следующий шар, который я выну, окажется белым?

Мы рассуждаем следующим образом. Путь h будет тот факт, что сумки имеют вышеописанный вид и содержание, а q — тот факт, что было вынуто m белых шаров; пусть также Pr будет гипотеза, что мы выбрали сумку, содержащую r белых шаров. Очевидно, что г должно быть по крайней мере таким же большим, как и m, то есть если г меньше, чем m, то Pr/qh=Q и q/Prh=0. После некоторых вычислений оказывается, что шанс, что мы выбрали сумку, в которой все шары белые, равен (m +1)/(n +1).

Теперь мы хотим знать шанс, что следующий шар будет белым. После некоторых дальнейших вычислений оказывается, что этот шанс равен (m +1)/(m +2).

Заметьте, что это не зависит от n и что если m велико, то оно очень близко к 1.

В вышеприведенное описание я не включил никакого аргумента по вопросу об индукции, которой я займусь позже. Прежде всего я рассмотрю адекватность определенной интерпретации вероятности, поскольку она может рассматриваться независимо от проблем, связанных с индукцией.

ГЛАВА 3.

ИНТЕРПРЕТАЦИЯ С ПОМОЩЬЮ ПОНЯТИЯ КОНЕЧНОЙ ЧАСТОТЫ.

В этой главе нас интересует одна очень простая интерпретация "вероятности". Мы должны прежде всего показать, что она удовлетворяет аксиомам главы SI, и затем рассмотреть в порядке предварительного разбора, насколько ее можно сделать соответствующей обычному употреблению слова "вероятность". Я буду называть эту интерпретацию "теорией конечной частоты", чтобы отличить ее от другой формы теории частоты, которой мы займемся ниже.

Теория конечной частоты исходит из следующего определения.

Пусть В будет любой конечный класс, а A — любой другой класс. Мы хотим определить шанс, что член класса В, выбранный наудачу, будет членом класса А, например, что первый человек, которого вы встретите на улице, будет иметь фамилию Смит. Мы определяем эту вероятность как число членов класса В, являющихся также членами класса А, деленное на полное число членов класса В. Мы обозначаем это знаком А/В.

Ясно, что вероятность, определяемая таким образом, должна быть или рациональной дробью, или 0, или 1.

Несколько примеров сделают ясным смысл этого определения. Каков шанс, что какое-либо целое число меньше 10, выбранное наудачу, будет простым числом? Существует 9 целых чисел меньше 10, и 5 из них являются простыми; следовательно, этот шанс равен 5/9. Каков шанс, что в прошлом году в Кембридже в день моего рождения шел дождь, в предположении, что вы не знаете, когда бывает день моего рождения? Если m есть число дней, когда шел дождь, то шанс равен m/365. Каков шанс, что человек, фамилия которого содержится в лондонской телефонной книге, носит фамилию Смит? Для решения этой задачи вы должны сначала сосчитать все записи в этой книге с фамилией "Смит", а затем сосчитать вообще все записи и разделить первое число на второе. Каков шанс, что карта, вытащенная наудачу из колоды, окажется пиковой масти? Ясно, что этот шанс равен 13/52, то есть 1/4. Если вы вытянули карту пиковой масти, то каков шанс, что следующая карта, которую вы вытащите, будет тоже пика? Ответ: 12/51. Каков шанс, что в бросании двух костей выпадет сумма 8? Имеется 36 комбинаций выпадения костей, и в 5 из них сумма будет равна 8, так что шанс выпадения суммы 8 равен 5/36.