На основании этих соображений, а также и потому, что логика вероятности гораздо менее полна и гораздо менее бесспорна, чем элементарная логика, необходимо развить теорию вероятности подробнее и исследовать различные спорные вопросы ее интерпретации. Следует помнить, что все обсуждение вопроса о вероятности играет роль предварительного введения к исследованию постулатов научного вывода.
ГЛАВА 1.
ВИДЫ ВЕРОЯТНОСТИ.
Попытки создать логику вероятности были многочисленны, но против большинства из них выдвигались роковые для них возражения. Одной из причин ошибочности этих теорий было то, что они не различали — или, скорее, намеренно смешивали — в корне различные понятия, которые в обычном словоупотреблении имеют одинаковое право называться словом "вероятность". В этой главе я намереваюсь провести предварительное и дискурсивное исследование этих разных понятий, откладывая до следующих глав попытку достичь строгих определений.
Первым весьма значительным фактом, который мы должны взять в расчет, является существование математической теории вероятности. Среди математиков, занимающихся этой теорией, существует весьма полное согласие в отношении всего того, что может быть выражено в математических символах, но вместе с тем полностью отсутствует согласие в отношении интерпретации математических формул. При таких обстоятельствах самым простым путем является перечисление аксиом, из которых эта теория может быть выведена, и принятие решения, что любое понятие, которое удовлетворяет требованиям этих аксиом, имеет с математической точки зрения одинаковое право называться словом "вероятность". Если имеется много таких понятий и если мы решаем сделать выбор среди них, то мотивы нашего выбора должны лежать вне математики.
Есть одно очень простое понятие, которое удовлетворяет требованиям аксиом теории вероятности и которое по другим основаниям имеет преимущество перед другими. Если дан конечный класс В, имеющий n членов, и если известно, что количество m из них принадлежит к какому-то другому классу A, то мы говорим, что если выбрать наудачу какой-либо член класса В, то шанс, что он будет принадлежать к классу А, будет равен числу m /n. Вопрос о том, соответствует ли это определение тому употреблению, которое мы хотим сделать из математической теории вероятности, мы будем рассматривать позже; если оно не соответствует, мы должны будем поискать какую-либо другую интерпретацию математической вероятности.
Следует иметь в виду, что здесь не встает вопрос об истинности или ложности. Любое понятие, которое удовлетворяет требованиям аксиом, может рассматриваться как понятие, которое само есть математическая вероятность. Действительно, возможно, что в одном контексте может быть удобным принять одну интерпретацию, а в другом — другую, так как удобство является единственным руководящим мотивом. Такова обычная ситуация при интерпретации математической теории. Например, как мы видели, вся арифметика может быть выведена из пяти аксиом, перечисленных Пеано, и, следовательно, если все, чего мы хотим от чисел, есть только то, что они должны повиноваться правилам арифметики, то мы можем определить, как ряд натуральных чисел, любой ряд, удовлетворяющий пяти аксиомам Пеано. Однако эти аксиомы удовлетворяются любой прогрессией, и, в частности, рядом натуральных чисел, начинающимся не с 0, а со 100, 1000 или с любого другого конечного целого числа. Только в том случае, если мы хотим, чтобы наши числа служили для перечисления, а не только для арифметики, мы получаем основание для выбора ряда, начинающегося с 0. Точно так же обстоит дело и в математической теории вероятности, где избираемая интерпретация может зависеть от той цели, которую мы имеем в виду.
Слово "вероятность" часто употребляется так, что не допускает или по крайней мере не допускает явно своей интерпретации как отношения чисел двух ограниченных классов. Мы можем сказать: "Вероятно, Зороастр существовал", "Вероятно, теория тяготения Эйнштейна лучше, чем теория Ньютона", "Вероятно, все люди смертны". Это не следует смешивать с предложением: "Все люди, вероятно, смертям". Но мы могли бы утверждать, что в этих случаях имеются определенные показания, о которых известно, что они в громадном большинстве случаев сочетаются с определенного рода выводами; таким путем теоретически и здесь можно было бы применить определение вероятности как отношения чисел двух классов. Следовательно, возможно, что примеры вроде вышеприведенных не предполагают нового значения "вероятности".
Есть, однако, два афоризма, которые все мы склонны принимать без особой проверки, но которые, если их принять, предполагают такую интерпретацию "вероятности", которую, по-видимому, нельзя примирить с вышеприведенными определениями. Первым из этих афоризмов является изречение епископа Батлера, что "вероятность есть руководитель жизни". Вторым является положение, что все наше знание только вероятно, на чем особенно настаивал Рейхенбах.
Изречение епископа Батлера, очевидно, имеет силу в соответствии с одной очень распространенной интерпретацией "вероятности". Когда, как это обычно бывает, я не уверен в том, что должно произойти, но должен действовать в соответствии с той или иной гипотезой, мне обычно и вполне правильно советуют выбирать наиболее вероятную гипотезу и всегда правильно советуют учитывать степень вероятности при принятии решения. Но существует очень важное логическое различие между вероятностью этого рода и математической вероятностью, а именно то различие, что последняя касается пропозициональных функций, а первая — высказываний. Когда я говорю, что шанс, что монета выпадет лицевой стороной, равен половине, то это — отношение между двумя пропозициональными функциями "х есть бросание монеты" и "х есть бросание монеты, которая выпадает лицевой стороной". То есть высказываний, содержащих неопределенные переменные, например "А есть человек", которые становятся высказываниями, когда мы приписываем переменной (в приведенном примере переменной А) какое-либо
значение. Если мне приходится делать вывод, что в каком-либо отдельном случае шанс выпадения лицевой стороной равен 1/2, то я должен сказать, что рассматриваю этот частный случай только как отдельный пример. Если бы я мог вникнуть во все его частности, я мог бы теоретически решить, упадет ли монета лицевой или оборотной стороной, и тогда я больше уже не был бы в сфере вероятности. Когда мы применяем вероятность в качестве руководителя наших действий, то это происходит потому, что наше знание недостаточно; мы знаем, что рассматриваемое событие является членом класса событий В, и мы можем знать, какая часть членов этого класса принадлежит к некоему классу А, которым мы интересуемся. Но эта часть будет изменяться в соответствии с нашим выбором класса В; мы, таким образом, получим различные вероятности, одинаково ценные с математической точки зрения. Для того чтобы вероятность могла стать руководителем практики, мы должны иметь какой-то способ выбора одной вероятности как действительной вероятности. Если мы не можем этого сделать, то все различные вероятности остаются одинаково ценными, и мы останемся без руководства.
Возьмем пример, когда каждый здравомыслящий человек руководствуется вероятностью. Я имею в виду страхование жизни. Я выясняю условия, на которых некая страховая компания согласна застраховать мою жизнь, и должен решить, будет ли страхование на этих условиях выгодной сделкой именно для меня, а не для страхования вообще.
Моя задача отличается от задачи страховой компании и является гораздо более трудной. Страховая компания не интересуется моим индивидуальным случаем: она предлагает страхование всем членам определенного класса и нуждается только в учете статистических средних чисел. Но я могу верить, что у меня есть особые основания думать, что я проживу долго или что я похож на того шотландца, который умер на другой день после уплаты последнего страхового взноса, успев сказать с последним вздохом: "Я всегда был счастливым парнем". Тут имеет значение каждое обстоятельство в моем здоровье и в моем образе жизни, но некоторые из этих обстоятельств могут быть настолько необычными, что я не смогу получить сколько-нибудь надежной помощи от статистики. Наконец, я решаю проконсультироваться с врачом, который, задав мне несколько вопросов, благожелательно говорит: "О, я думаю, что вы проживете до 90 лет". Я с сожалением сознаю не только то, что его суждение поспешно и не научно, но также и то, что он хочет сказать мне что-то приятное. Вероятность, к которой я в конце концов прихожу, является, таким образом, чем-то в высшей степени неопределенным и совершенно не поддающимся числовому измерению; но именно на основании этой неопределенной вероятности я, как последователь епископа Батлера, и должен действовать.
Вероятность, являющаяся руководителем жизни, не относится к математическому виду вероятности не только потому, что она относится не к произвольным данным, а ко всем данным, которые с самого начала имеют отношение к вопросу, но также и потому, что она должна учитывать нечто целиком лежащее вне сферы математической вероятности, что можно назвать "внутренне присущей сомнительностью". Именно это и имеется в виду, когда говорят, что все наше познание только вероятно. Возьмем, например, воспоминание о далеком прошлом, которое стало настолько забытым, что мы не можем больше относиться к нему с доверием, звезду, настолько тусклую, что мы не уверены в том, действительно ли мы ее видим, или шум, настолько слабый, что мы думаем, что он нам только кажется. Это крайние случаи, но в меньшей степени такого рода сомнительность очень обычна. Если мы утверждаем, как это делает Рейхенбах, что все наше знание сомнительно, то мы не можем определить эту сомнительность математическим путем, ибо при составлении статистики уже предполагается, что мы знаем, что А есть или не есть В, что этот застрахованный человек умер или что он жив. Статистика строится на структуре предположенной достоверности прошедших случаев, и всеобщая сомнительность не может быть только статистической.