Смекни!
smekni.com

Курс лекций Математические методы в психологии (стр. 10 из 32)

Допустим, что имеются следующие две выборки эксперимен­тальных данных: 2, 4, 5, 3, 2, 1, 3, 2, 6, 4 и 4, 5, 6, 4, 4, 3, 5, 2, 2, 7.

Средние значения по этим двум выборкам соответственно рав­ны 3,2 и 4,2. Кажется, что они существенно друг от друга отлича­ются. Но так ли это и насколько статистически достоверны эти различия? На данный вопрос может точно ответить только ста­тистический анализ с использованием описанного статистичес­кого критерия. Воспользуемся этим критерием.

Определим сначала выборочные дисперсии для двух срав­ниваемых выборок значений:

Поставим найденные значения дисперсий в формулу для под-

счета т и t и вычислим показатель t

Сравним его значение с табличным для числа степеней сво­боды 10+10-2 = 18. Зададим вероятность допустимой ошибки, равной 0,05, и убедимся в том, что для данного числа степеней свободы и заданной вероятности допустимой ошибки значение t должно быть не меньше чем 2,10. У нас же этот показатель ока­зался равным 1,47, т.е. меньше табличного. Следовательно, ги­потеза о том, что выборочные средние, равные в нашем случае 3,2 и 4,2, статистически достоверно отличаются друг от друга, не подтвердилась, хотя на первый взгляд казалось, что такие раз­личия существуют.

Вероятность допустимой ошибки, равная и меньшая чем 0,05, считается достаточной для научно убедительных выводов. Чем меньше эта вероятность, тем точнее и убедительнее делаемые вы­воды. Например, избрав вероятность допустимой ошибки, равную 0,05, мы обеспечиваем точность расчетов 95% и допускаем ошибку, не превышающую 5%, а выбор вероятности допустимой ошибки 0,001 гарантирует точность расчетов, превышающую 99,99%, или ошибку, меньшую чем 0,01%.

Описанная методика сравнения средних величин по крите­рию Стъюдента в практике применяется тогда, когда необходи­мо, например, установить, удался или не удался эксперимент, оказал или не оказал он влияние на уровень развития того пси­хологического качества, для изменения которого предназначал­ся. Допустим, что в некотором учебном заведении вводится но­вая экспериментальная программа или методика обучения, рас­считанная на то, чтобы улучшить знания учащихся, повысить уровень их интеллектуального развития. В этом случае выясня­ется причинно-следственная связь между независимой перемен­ной — программой или методикой и зависимой переменной — знаниями или уровнем интеллектуального развития. Соответ­ствующая гипотеза гласит: «Введение новой учебной програм­мы или методики обучения должно будет существенно улучшить знания или повысить уровень интеллектуального развития уча­щихся».

Предположим, что данный эксперимент проводится по схе­ме, предполагающей оценки зависимой переменной в начале и в конце эксперимента. Получив такие оценки и вычислив средние по всей изученной выборке испытуемых, мы можем воспользо­ваться критерием Стъюдента для точного установления нали­чия или отсутствия статистически достоверных различий меж­ду средними до и после эксперимента. Если окажется, что они действительно достоверно различаются, то можно будет сделать определенный вывод о том, что эксперимент удался. В против­ном случае нет убедительных оснований для такого вывода даже в том случае, если сами средние величины в начале и в конце эксперимента по своим абсолютным значениям различны.

Иногда в процессе проведения эксперимента возникает спе­циальная задача сравнения не абсолютных средних значений не­которых величин до и после эксперимента, а частотных, напри­мер процентных, распределений данных. Допустим, что для экс­периментального исследования была взята выборка из 100 учащихся и с ними проведен формирующий эксперимент. Предпо­ложим также, что до эксперимента 30 человек успевали на «удов­летворительно», 30 — на «хорошо», а остальные 40 — на «отлич­но». После эксперимента ситуация изменилась. Теперь на «удов­летворительно» успевают только 10 учащихся, на «хорошо» — 45 учащихся и на «отлично» — остальные 45 учащихся. Можно ли, опираясь на эти данные, утверждать, что формирующий экс­перимент, направленный на улучшение успеваемости, удался?

Для ответа на данный вопрос можно воспользоваться статис­тикой, называемой χ2-критерий («хи-квадрат критерий»). Его формула выглядит следующим образом:

где Pk —. частоты результатов наблюдений до эксперимента;

Vk — частоты результатов наблюдений, сделанных после экс­перимента;

т — общее число групп, на которые разделились результаты наблюдений.

Воспользуемся приведенным выше примером для того, что­бы показать, как работает хи-квадрат критерий. В данном при­мере переменная Ркпринимает следующие значения: 30%, 30%, 40%, а переменная Vkтакие значения: 10%, 45%, 45%.

Подставим все эти значения в формулу для %2 и определим его величину:

Воспользуемся теперь таблицей 33, где для заданного числа степеней свободы можно выяснить степень значимости образо­вавшихся различий до и после эксперимента в распределении оценок. Полученное нами значение χ2 — 21,5 больше соответст­вующего табличного значения т - 1 = 2 степеней свободы, со­ставляющего 13,82 при вероятности допустимой ошибки мень­ше чем 0,001. Следовательно, гипотеза о значимых изменениях, которые произошли в оценках учащихся в результате введения новой программы или новой методики обучения,

Таблица 33

Граничные (критические) значения c2-критерия,

соответствующие разным вероятностям допустимой ошибки

и разным степеням свободы

Число степеней свободы (m-1)

Вероятность допустимой ошибки

0,05

0,01

0,001

1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

3,84

5,99

7,81

9,49 11,07

12,59 14,07 15,51 16,92 18,31 19,68 21,03 22,36 23,68 25,00

6,64

9,21 11,34 13,28 15,09 16,81 18,48 20,09 21,67 23,21 24.72 26,05 27,69 29,14 30,58

10,83 13,82 16,27 18,46 20,52 22,46 24,32 26,12 27.88 29,59 31,26 32,91 34,53 36,12 37,70

экспериментально подтвердилась: успеваемость значительно улучшилась, и это мы можем утверждать, допуская ошибку, не превышающую 0,001%.

Иногда в психолого-педагогическом эксперименте возника­ет необходимость сравнить дисперсии двух выборок для того, чтобы решить, различаются ли эти дисперсии между собой. До­пустим, что проводится эксперимент, в котором проверяется ги­потеза о том, что одна из двух предлагаемых программ или ме­тодик обучения обеспечивает одинаково успешное усвоение зна­ний учащимися с разными способностями, а другая программа или методика этим свойством не обладает. Демонстрацией спра­ведливости такой гипотезы было бы доказательство того, что ин­дивидуальный разброс оценок учащихся по одной программе или методике больше (или меньше), чем индивидуальный разброс оценок по другой программе или методике.

Критерий Фишера

Подобного рода задачи решаются, в частности, при помощи критерия Фишера. Его формула выглядит следующим образом:

где n1количество значения признака в первой из сравнивае­мых выборок;

п2— количество значений признака во второй из сравниваемых выборок;

(п11, п21) — число степеней свобо­ды;