Допустим, что имеются следующие две выборки экспериментальных данных: 2, 4, 5, 3, 2, 1, 3, 2, 6, 4 и 4, 5, 6, 4, 4, 3, 5, 2, 2, 7.
Средние значения по этим двум выборкам соответственно равны 3,2 и 4,2. Кажется, что они существенно друг от друга отличаются. Но так ли это и насколько статистически достоверны эти различия? На данный вопрос может точно ответить только статистический анализ с использованием описанного статистического критерия. Воспользуемся этим критерием.
Определим сначала выборочные дисперсии для двух сравниваемых выборок значений:
Поставим найденные значения дисперсий в формулу для под-
счета т и t и вычислим показатель t
Сравним его значение с табличным для числа степеней свободы 10+10-2 = 18. Зададим вероятность допустимой ошибки, равной 0,05, и убедимся в том, что для данного числа степеней свободы и заданной вероятности допустимой ошибки значение t должно быть не меньше чем 2,10. У нас же этот показатель оказался равным 1,47, т.е. меньше табличного. Следовательно, гипотеза о том, что выборочные средние, равные в нашем случае 3,2 и 4,2, статистически достоверно отличаются друг от друга, не подтвердилась, хотя на первый взгляд казалось, что такие различия существуют.
Вероятность допустимой ошибки, равная и меньшая чем 0,05, считается достаточной для научно убедительных выводов. Чем меньше эта вероятность, тем точнее и убедительнее делаемые выводы. Например, избрав вероятность допустимой ошибки, равную 0,05, мы обеспечиваем точность расчетов 95% и допускаем ошибку, не превышающую 5%, а выбор вероятности допустимой ошибки 0,001 гарантирует точность расчетов, превышающую 99,99%, или ошибку, меньшую чем 0,01%.
Описанная методика сравнения средних величин по критерию Стъюдента в практике применяется тогда, когда необходимо, например, установить, удался или не удался эксперимент, оказал или не оказал он влияние на уровень развития того психологического качества, для изменения которого предназначался. Допустим, что в некотором учебном заведении вводится новая экспериментальная программа или методика обучения, рассчитанная на то, чтобы улучшить знания учащихся, повысить уровень их интеллектуального развития. В этом случае выясняется причинно-следственная связь между независимой переменной — программой или методикой и зависимой переменной — знаниями или уровнем интеллектуального развития. Соответствующая гипотеза гласит: «Введение новой учебной программы или методики обучения должно будет существенно улучшить знания или повысить уровень интеллектуального развития учащихся».
Предположим, что данный эксперимент проводится по схеме, предполагающей оценки зависимой переменной в начале и в конце эксперимента. Получив такие оценки и вычислив средние по всей изученной выборке испытуемых, мы можем воспользоваться критерием Стъюдента для точного установления наличия или отсутствия статистически достоверных различий между средними до и после эксперимента. Если окажется, что они действительно достоверно различаются, то можно будет сделать определенный вывод о том, что эксперимент удался. В противном случае нет убедительных оснований для такого вывода даже в том случае, если сами средние величины в начале и в конце эксперимента по своим абсолютным значениям различны.
Иногда в процессе проведения эксперимента возникает специальная задача сравнения не абсолютных средних значений некоторых величин до и после эксперимента, а частотных, например процентных, распределений данных. Допустим, что для экспериментального исследования была взята выборка из 100 учащихся и с ними проведен формирующий эксперимент. Предположим также, что до эксперимента 30 человек успевали на «удовлетворительно», 30 — на «хорошо», а остальные 40 — на «отлично». После эксперимента ситуация изменилась. Теперь на «удовлетворительно» успевают только 10 учащихся, на «хорошо» — 45 учащихся и на «отлично» — остальные 45 учащихся. Можно ли, опираясь на эти данные, утверждать, что формирующий эксперимент, направленный на улучшение успеваемости, удался?
Для ответа на данный вопрос можно воспользоваться статистикой, называемой χ2-критерий («хи-квадрат критерий»). Его формула выглядит следующим образом:
где Pk —. частоты результатов наблюдений до эксперимента;
Vk — частоты результатов наблюдений, сделанных после эксперимента;
т — общее число групп, на которые разделились результаты наблюдений.
Воспользуемся приведенным выше примером для того, чтобы показать, как работает хи-квадрат критерий. В данном примере переменная Ркпринимает следующие значения: 30%, 30%, 40%, а переменная Vk — такие значения: 10%, 45%, 45%.
Подставим все эти значения в формулу для %2 и определим его величину:
Воспользуемся теперь таблицей 33, где для заданного числа степеней свободы можно выяснить степень значимости образовавшихся различий до и после эксперимента в распределении оценок. Полученное нами значение χ2 — 21,5 больше соответствующего табличного значения т - 1 = 2 степеней свободы, составляющего 13,82 при вероятности допустимой ошибки меньше чем 0,001. Следовательно, гипотеза о значимых изменениях, которые произошли в оценках учащихся в результате введения новой программы или новой методики обучения,
Таблица 33
Граничные (критические) значения c2-критерия,
соответствующие разным вероятностям допустимой ошибки
и разным степеням свободы
Число степеней свободы (m-1) | Вероятность допустимой ошибки | ||
0,05 | 0,01 | 0,001 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | 3,84 5,99 7,81 9,49 11,07 12,59 14,07 15,51 16,92 18,31 19,68 21,03 22,36 23,68 25,00 | 6,64 9,21 11,34 13,28 15,09 16,81 18,48 20,09 21,67 23,21 24.72 26,05 27,69 29,14 30,58 | 10,83 13,82 16,27 18,46 20,52 22,46 24,32 26,12 27.88 29,59 31,26 32,91 34,53 36,12 37,70 |
экспериментально подтвердилась: успеваемость значительно улучшилась, и это мы можем утверждать, допуская ошибку, не превышающую 0,001%.
Иногда в психолого-педагогическом эксперименте возникает необходимость сравнить дисперсии двух выборок для того, чтобы решить, различаются ли эти дисперсии между собой. Допустим, что проводится эксперимент, в котором проверяется гипотеза о том, что одна из двух предлагаемых программ или методик обучения обеспечивает одинаково успешное усвоение знаний учащимися с разными способностями, а другая программа или методика этим свойством не обладает. Демонстрацией справедливости такой гипотезы было бы доказательство того, что индивидуальный разброс оценок учащихся по одной программе или методике больше (или меньше), чем индивидуальный разброс оценок по другой программе или методике.
Критерий Фишера
Подобного рода задачи решаются, в частности, при помощи критерия Фишера. Его формула выглядит следующим образом:
где n1 — количество значения признака в первой из сравниваемых выборок;
п2— количество значений признака во второй из сравниваемых выборок;
(п1 — 1, п2 — 1) — число степеней свободы;