Большие массивы числовых результатов измерений по тестам— в баллах, стали объектом многочисленных исследований, в том числе математико-психологических. Особая роль здесь принадлежит английскому инженеру, работавшему в Америке, —Чарльзу Спирмену
Во-первых, Ч. Спирмен, полагавший, что для вычисления корреляции между рядами целочисленных баллов, или рангов, нужна специальная мера, перепробовав разные варианты (я читал его объемную статью в Американском психологическом журнале за 1904 г.), остановился, наконец, на той форме коэффициента корреляции рангов, которая с тех пор носит его имя.
Во-вторых, имея дело с большими массивами числовых результатов по тестам и корреляций между этими результатами, Ч. Спирмен предположил, что эти корреляции вовсе не выражают взаимовлияние результатов, а эксплицируют их совместную изменчивость под влиянием обшей латентной психической причины, или фактора, например интеллекта. Соответственно этому Спирмен предложил теорию «генерального» фактора, определяющего совместную изменчивость переменных тестовых результатов, а также разработал метод выявления этого фактора по корреляционной матрице. Это был первый метод факторного анализа, созданный в психологии и для психологических целей.
У однофакторной теории Ч. Спирмена быстро нашлись оппоненты. Противоположную, многофакторную теорию, объясняющую корреляции, предложил Леон Терстоун. Ему же принадлежит первый метод мультифакторного анализа, основанный на применении линейной алгебры. После Ч. Спирмена и Л. Терстоуна факторный анализ, не только стал одним из важнейших математических методов многомерного анализа данных в психологии, но и вышел далеко за ее пределы, превратился в общенаучный метод анализа, данных.
С конца 20-х гг XX века математические методы все шире проникают в психологию и творчески используются в ней. Интенсивно развивается психологическая теория измерений. На основе аппарата цепей Маркова разрабатываются стохастические модели научения в психологии поведения. Созданный в области биологии Рональдом Фишером дисперсионный анализ становится основным математическим методом в генетической психологии. Математические модели из теории автоматического регулирования и шенноновская теория информации широко применяются в инженерной и общей психологии. В итоге современная научная психология во многих своих отраслях математизирована значительным образом. При этом вновь появляющиеся математические новации нередко заимствуются психологами для своих целей. К примеру, появление алгоритмического языка для задач управления, предложенного А. А. Ляпуновым и Г. А. Шестопалом, почти сразу же бьшо использовано В.Н.Пушкиным для составления алгоритмов деятельности железнодорожного диспетчера.
Должен возникнуть вопрос: какими особыми свойствами обладает математика, если одни и те же математические методы успешно применяются в различных науках. Отвечая на этот вопрос, следует обратиться к предмету математики и ее объектам.
На протяжении многих столетий считалось, что предметом математики является все сущее — природа в широком смысле. Математики древности полагали, что математические формы имеют божественное происхождение. Так, Платон рассматривал геометрические фигуры как идеальные эйдосы, т. е. образы, созданные высшими богами для копирования людьми, конечно, уже не в той совершенной форме. А знаменитый Пифагор видел в числах и определенных числовых сочетаниях предустановленную гармонию небесных сфер.
Религиозное мировоззрение людей веками связывало божественное творение мира с математическими средствами, с помощью которых выражаются законы природы. Глубоко религиозный сэр Исаак Ньютон верил, что «книга природы написана на языке математики», и широко использовал математические методы в своей натуральной философии.
Надо сказать, что, даже отказавшись от веры в божественное творение мира, многие математики продолжали считать природу предметом математики. Нам широко известна формулировка, данная в свое время Ф. Энгельсом: «Предметом математики служат пространственные формы и количественные отношения материального мира». Еще и сегодня можно встретить эту формулировку в учебной литературе. Правда, появились и другие трактовки предмета — как наиболее абстрактных моделей всего сущего. Но здесь, намой взгляд, предмет математики опять-таки сужен до служебной функции — моделирования и снова природы в широком смысле.
Спрашивается, а правильно ли это, отказавшись от идеи творения, по-прежнему считать природу предметом математики? Ведь это не только не последовательно. Дело в том, что один и тот же природный закон можно выразить математически по-разному и в пределах научной точности нельзя доказать, какое из выражений истинно. Примером могут служить логарифмический закон Вебера—Фехнера и степенной закон Стивенса, которые, как показал Ю. М. Забродин, оба выводятся при определенных допущениях из некоего обобщенного психофизического закона. То обстоятельство, что один и тот же математический метод описывает явления из разных наук, тоже свидетельствует не в пользу природы как предмета математики.
Так если не природа, то что же является предметом математики? Мой ответ, несомненно, крайне удивит многих представителей физико-математических наук: предметом математики является ее собственный продукт—те математические объекты, из которых состоит математика как наука.
Математический объект — это продукт человеческой мысли, материализованный хотя бы в одной из пяти основных форм: вербальной, графической, табличной, символической или аналитической. Конечно, древний мыслитель мог найти в природе аналоги математическим объектам — геометрическим формам, числам, как-либо физически воплощенным (прямая тростинка, пять камней и т. п.). Но ведь математическую сущность надо было абстрагировать от материальной природной формы. Лишь после этого она становилась математической, а не физической (биологической и т.д.). И сделать это мог только человек. В длинном ряду поколений — и для практических целей, и ради интереса — люди создавали тот мир математических объектов (включая отношения и операции над объектами, которые тоже суть математические объекты), который называется математикой.
Подобно психологии, математика — это обширная и бурно развивающаяся область знаний. Но она также далеко не однородна: в ее составе выделяются не только многочисленные отрасли, но и «разные математики». Существуют «чистая» и прикладная, «непрерывная» и дискретная, «не конструктивная» и конструктивная, формально-логическая и содержательная математики.
Пожалуй, так же как нет психолога, знающего все отрасли психологии, так нет и математика, знающего все отрасли и направления современной математики. Ведь даже энциклопедии и справочники наряду с классическими, традиционными разделами, общими для всех, содержат различные дополнительные, причем отнюдь не новые разделы математических сведений. Обилие и разнообразие математических теорий и методов порождает проблемы выбора и практического использования математики за ее пределами, в том числе в психологии. Но об этом мы поговорим в последней главе книги.
Абстрактный характер математики, ее независимость от природы в широком смысле и позволяют использовать математические методы в самых разных приложениях. Разумеется, при этом важно, чтобы метод был адекватен объекту, для изучения которого применяется.
Для того чтобы завершить рассмотрение общих вопросов, остановимся на том, что понимается под математическими методами.
В каждой науке, помимо ее предмета, предполагают существующими особые, свойственные данной науке методы. Так, для современной психологии характерным является метод тестов. Используемые в ней методы наблюдения, беседы, эксперимента и т.д., о которых пишется в учебниках, не являются специфичными для психологии и широко используются в других науках. Вообще, за редким исключением, современные научные методы универсальны и применяются везде, где можно.
Аналогично обстоит дело с математикой. И хотя большинство математиков убеждены в специфичности аксиоматического подхода, математической индукции и доказательств, на самом деле все эти методы используются и за пределами математики.
Как я уже отмечал, математические объекты существуют в текстах и мыслях думающих о них людей в одной, нескольких или всех из пяти основных форм — словесной, графической, табличной, символической и аналитической. Это названия объектов, геометрические фигуры или чертежи и графики, различные таблицы, символы объектов, операций и отношений, наконец, различные формулы, которыми выражаются отношения между объектами. Так вот математические методы представляют собой правила или процедуры построения, преобразования, метризации и вычисления математических объектов—всего четыре основных типа методов. Среди каждого из них есть простые и сложные, как, например, суммирование двух чисел и факторизация корреляционной матрицы. Пятый тип — комбинированный из основных — открывает неограниченные возможности конструирования новых математических методов, необходимых для определенных научных приложений.
Заканчивая, отмечу, что многие методы играют служебную роль в самой математике, как, в частности, доказательства теорем или определенные строгости изложения, так приветствуемые математиками. Для практических приложений математических методов за пределами математики, в том числе в психологии, математические строгости и тонкости не нужны: они затеняют суть результатов, в которых математика должна находиться на заднем плане, как, например, логарифмическая основа психофизического закона Вебера—Фехнера.