Смекни!
smekni.com

Курс лекций Математические методы в психологии (стр. 2 из 32)

Большие массивы числовых результатов измерений по тестам— в баллах, стали объектом многочисленных исследований, в том чис­ле математико-психологических. Особая роль здесь принадлежит ан­глийскому инженеру, работавшему в Америке, —Чарльзу Спирмену

Во-первых, Ч. Спирмен, полагавший, что для вычисления корреляции между рядами целочисленных баллов, или рангов, нужна специальная мера, перепробовав разные варианты (я читал его объемную статью в Американском психологическом журнале за 1904 г.), остановился, наконец, на той форме коэффициента корреляции рангов, которая с тех пор носит его имя.

Во-вторых, имея дело с большими массивами числовых ре­зультатов по тестам и корреляций между этими результатами, Ч. Спирмен предположил, что эти корреляции вовсе не выражают взаимовлияние результатов, а эксплицируют их совместную из­менчивость под влиянием обшей латентной психической причи­ны, или фактора, например интеллекта. Соответственно этому Спирмен предложил теорию «генерального» фактора, определя­ющего совместную изменчивость переменных тестовых результа­тов, а также разработал метод выявления этого фактора по корре­ляционной матрице. Это был первый метод факторного анализа, созданный в психологии и для психологических целей.

У однофакторной теории Ч. Спирмена быстро нашлись оппоненты. Противоположную, многофакторную теорию, объясня­ющую корреляции, предложил Леон Терстоун. Ему же принадле­жит первый метод мультифакторного анализа, основанный на применении линейной алгебры. После Ч. Спирмена и Л. Терстоуна факторный анализ, не только стал одним из важнейших мате­матических методов многомерного анализа данных в психологии, но и вышел далеко за ее пределы, превратился в общенаучный метод анализа, данных.

С конца 20-х гг XX века математические методы все шире про­никают в психологию и творчески используются в ней. Интен­сивно развивается психологическая теория измерений. На основе аппарата цепей Маркова разрабатываются стохастические моде­ли научения в психологии поведения. Созданный в области био­логии Рональдом Фишером дисперсионный анализ становится основным математическим методом в генетической психологии. Математические модели из теории автоматического регулирова­ния и шенноновская теория информации широко применяются в инженерной и общей психологии. В итоге современная научная психология во многих своих отраслях математизирована значительным образом. При этом вновь появляющиеся математичес­кие новации нередко заимствуются психологами для своих целей. К примеру, появление алгоритмического языка для задач управ­ления, предложенного А. А. Ляпуновым и Г. А. Шестопалом, по­чти сразу же бьшо использовано В.Н.Пушкиным для составления алгоритмов деятельности железнодорожного диспетчера.

Должен возникнуть во­прос: какими особыми свойствами обладает математика, если одни и те же математические методы успешно применяются в различ­ных науках. Отвечая на этот вопрос, следует обратиться к предме­ту математики и ее объектам.

На протяжении многих столетий считалось, что предметом математики является все сущее — природа в широком смысле. Математики древности полагали, что математические формы име­ют божественное происхождение. Так, Платон рассматривал гео­метрические фигуры как идеальные эйдосы, т. е. образы, создан­ные высшими богами для копирования людьми, конечно, уже не в той совершенной форме. А знаменитый Пифагор видел в числах и определенных числовых сочетаниях предустановленную гармо­нию небесных сфер.

Религиозное мировоззрение людей веками связывало боже­ственное творение мира с математическими средствами, с помо­щью которых выражаются законы природы. Глубоко религиозный сэр Исаак Ньютон верил, что «книга природы написана на языке математики», и широко использовал математические методы в своей натуральной философии.

Надо сказать, что, даже отказавшись от веры в божественное тво­рение мира, многие математики продолжали считать природу пред­метом математики. Нам широко известна формулировка, данная в свое время Ф. Энгельсом: «Предметом математики служат простран­ственные формы и количественные отношения материального мира». Еще и сегодня можно встретить эту формулировку в учебной литера­туре. Правда, появились и другие трактовки предмета — как наибо­лее абстрактных моделей всего сущего. Но здесь, намой взгляд, пред­мет математики опять-таки сужен до служебной функции — моде­лирования и снова природы в широком смысле.

Спрашивается, а правильно ли это, отказавшись от идеи тво­рения, по-прежнему считать природу предметом математики? Ведь это не только не последовательно. Дело в том, что один и тот же природный закон можно выразить математически по-разному и в пределах научной точности нельзя доказать, какое из выраже­ний истинно. Примером могут служить логарифмический закон Вебера—Фехнера и степенной закон Стивенса, которые, как по­казал Ю. М. Забродин, оба выводятся при определенных допуще­ниях из некоего обобщенного психофизического закона. То об­стоятельство, что один и тот же математический метод описывает явления из разных наук, тоже свидетельствует не в пользу приро­ды как предмета математики.

Так если не природа, то что же является предметом математи­ки? Мой ответ, несомненно, крайне удивит многих представите­лей физико-математических наук: предметом математики явля­ется ее собственный продукт—те математические объекты, из ко­торых состоит математика как наука.

Математический объект — это продукт человеческой мысли, материализованный хотя бы в одной из пяти основных форм: вер­бальной, графической, табличной, символической или аналити­ческой. Конечно, древний мыслитель мог найти в природе аналоги математическим объектам — геометрическим формам, числам, как-либо физически воплощенным (прямая тростинка, пять кам­ней и т. п.). Но ведь математическую сущность надо было абстра­гировать от материальной природной формы. Лишь после этого она становилась математической, а не физической (биологичес­кой и т.д.). И сделать это мог только человек. В длинном ряду по­колений — и для практических целей, и ради интереса — люди создавали тот мир математических объектов (включая отношения и операции над объектами, которые тоже суть математические объекты), который называется математикой.

Подобно психологии, математика — это обширная и бурно развивающаяся область знаний. Но она также далеко не однород­на: в ее составе выделяются не только многочисленные отрасли, но и «разные математики». Существуют «чистая» и прикладная, «непрерывная» и дискретная, «не конструктивная» и конструк­тивная, формально-логическая и содержательная математики.

Пожалуй, так же как нет психолога, знающего все отрасли психо­логии, так нет и математика, знающего все отрасли и направле­ния современной математики. Ведь даже энциклопедии и спра­вочники наряду с классическими, традиционными разделами, общими для всех, содержат различные дополнительные, причем отнюдь не новые разделы математических сведений. Обилие и разнообразие математических теорий и методов порождает про­блемы выбора и практического использования математики за ее пределами, в том числе в психологии. Но об этом мы поговорим в последней главе книги.

Абстрактный характер математики, ее независимость от при­роды в широком смысле и позволяют использовать математичес­кие методы в самых разных приложениях. Разумеется, при этом важно, чтобы метод был адекватен объекту, для изучения которо­го применяется.

Для того чтобы завершить рассмотрение общих вопросов, оста­новимся на том, что понимается под математическими методами.

В каждой науке, помимо ее предмета, предполагают существу­ющими особые, свойственные данной науке методы. Так, для со­временной психологии характерным является метод тестов. Ис­пользуемые в ней методы наблюдения, беседы, эксперимента и т.д., о которых пишется в учебниках, не являются специфичными для психологии и широко используются в других науках. Вообще, за редким исключением, современные научные методы универ­сальны и применяются везде, где можно.

Аналогично обстоит дело с математикой. И хотя большинство математиков убеждены в специфичности аксиоматического под­хода, математической индукции и доказательств, на самом деле все эти методы используются и за пределами математики.

Как я уже отмечал, математические объекты существуют в тек­стах и мыслях думающих о них людей в одной, нескольких или всех из пяти основных форм — словесной, графической, табличной, символической и аналитической. Это названия объектов, геомет­рические фигуры или чертежи и графики, различные таблицы, сим­волы объектов, операций и отношений, наконец, различные фор­мулы, которыми выражаются отношения между объектами. Так вот математические методы представляют собой правила или процедуры построения, преобразования, метризации и вы­числения математических объектов—всего четыре основных типа методов. Среди каждого из них есть простые и сложные, как, на­пример, суммирование двух чисел и факторизация корреляцион­ной матрицы. Пятый тип — комбинированный из основных — открывает неограниченные возможности конструирования новых математических методов, необходимых для определенных науч­ных приложений.

Заканчивая, отмечу, что многие методы играют служебную роль в самой математике, как, в частности, доказательства теорем или определенные строгости изложения, так приветствуемые ма­тематиками. Для практических приложений математических ме­тодов за пределами математики, в том числе в психологии, мате­матические строгости и тонкости не нужны: они затеняют суть результатов, в которых математика должна находиться на заднем плане, как, например, логарифмическая основа психофизического закона Вебера—Фехнера.