Смекни!
smekni.com

Курс лекций Математические методы в психологии (стр. 7 из 32)

44 Налимов В. В. Теория эксперимента. М.: Наука, 1975.207 с.

45 Налимов В. В., Голикова Т. И. Логические основания планирования эксперимента. Изд. 2-е. М.: Металлургия, 1981.152 с.

46 Нискина Н.П. Непараметрические методы математической статистики и решение задач проверки гипотез./ Проблемы компьютеризации и статистики в прикладных науках. Сборник трудов. М.: ВНИИСИ, 1990. С. 73-89.

47 Носенко И.А. Начала статистики для лингвистов. М.: Высшая школа, 1981. 157с.

48 Оуэн Д.Б. Сборник статистических таблиц. / Пер. с англ. Л.Н. Большева и В.Ф. Котельниковой. Изд. 2-е, исправл. М.: Вычислительный центр АН СССР. 1973. 586 с.

49 Паповян С.С. Математические методы в социальной психологии. М.: Наука, 1983. 343 с.

50 Плохинский НА. Дисперсионный анализ. / Под ред. чл.-корр. АН СССР Н.П. Дубинина. Новосибирск: Сиб. Отд. АН СССР, 1960. 124 с.

51 Плохинскии НА. Биометрия. 2-е изд. М.: МГУ, 1970. 368 с.

52 Пуни А.Ц. Психологические основы волевой подготовки в спорте. Учебное пособие. Л.: ГИФК,1977.48с.

53 Пустыльник Е.И. Статистические методы анализа и обработки наблюдений. М : Наука, 1968. 185с.

54 Рахова М.Э. Личностная предрасположенность к определенным видам страха. Дипломная работа выпускницы кафедры социальной психологии факультета психологии СПбГУ. СПб., 1994. 54 с.

55 Роджерс К. Взгляд на психотерапию. Становление человека. / Пер. с англ. / /Общ. ред. и предисл. Е.И.Исениной. М.: Прогресс, Универс. 1994. 480 с.

56 Рунион Р. Справочник по непараметрической статистике. М.: Финансы и статистика, 1982. 198с.

57 Сидоренко (Маркова) Е.В. Связь мотивации достижения с индивидными и личностными свойствами / Вопросы экспериментальной и прикладной психологии. Сборник аспирантских работ. Л.: ЛГУ, 1980. Деп. в ВНТИ №435-80 от 7 февр. 1980. С. 64-72

58 Сидоренко (Маркова) Е.В. Исследование психодиагностических возможностей проективной методики Хекхаузена. / Личность в системе коллективных отношений. Тезисы докладов Всесоюзной конференции в г.Курске. Курск: 1980. С. 43-45

59 Сидоренко (Маркова) Е.В. Мотивационно-волевые особенности личности как фактор успешной деятельности. Дисс. на соискание учен. степ. канд. психол. наук. Л.: ЛГУ. 1984. 262с.

60 Сидоренко (Маркова) Е.В. Психодраматический и недирективный подходы в групповой работе с людьми. Методические описания и комментарии. СПб.: Центр психологической поддержки учителя, 1992. 72 с.

61 Сидоренко Е.В. Экспериментальная групповая психология. Комплекс "неполноценности" и анализ ранних воспоминаний в концепции Альфреда Адлера. Учебное пособие. СПб.: СПбГУ, 1993. 152 с.

62 Сидоренко Е.В. Опыты реоритационного тренинга. СПб.: Институт тренинга, 1995. 248 с.

63 Сидоренко Е.В.. Дерманова И.Б.. Анисимова О.М„ Витснберг Е.В., Шулыга А.П. Разработка методики отбора и подготовки кадров в представительные органы муниципальной власти. СПб.: Гуманистический и политологический Центр "Стратегия", 1994. 26 с.

64 Сочивко Л.Б.. Якунин В.А. Математические модели в психолого- педагогических исследованиях. Учебное пособие. Л.: ЛГУ, 1988. 68 с.

65 Справочник по прикладной статистике. В 2-х т. Т.2 / Пер. с англ. под ред. Э.Ллойда, У. Ледермана, С.А. Айвазяна, Ю.Н. Тюрина. М.: Финансы и статистика, 1990. 526 с.

66 Стан Н.В. Социально-психологическое исследование стереотипов мужественности. Дипломная работа выпускницы кафедры социальной психологии факультета психологии СПбГУ. СПб., 1992. 58 с.

67 Стивенс С. Математика, измерение и психофизика // Экспериментальная психология (Под ред. С.С. Стивенса). // Пер. с англ под ред. действ, чл. АМН СССР П.К. Анохина, докт. пед. наук В.А. Артемова. М.: Иностранная литература, 1960. т.1. С. 19-92.

68 Суходольский Г.В. Основы математической статистики для психологов. Л.: ЛГУ, 1972. 428 с.

69 Суходольский Г.В. Математико-психологические модели деятельности. СПб.: Петрополис,1994.64 с.

70 Тлегенова Г.А. Влияние агрессивности на проксемические характеристики невербального поведения. Дипломная работа выпускницы кафедры социальной психологии факультета психологии СПбГУ. СПб., 1990. 28 с.

71 Телешова Ю.Н. Логика математического анализа социологических данных. М.: Наука, 1991.112с.

72 Тюрин Ю.Н. Непараметрические методы статистики. М.: Знание, 1978. 64 с.

73 Тюрин Ю.Н., Макаров А.А, Анализ данных на компьютере. // Под ред. В.В. Фигурнова. М.: Финансы и статистика, 1995. 384 с.

74 Урбах В.Ю. Математическая статистика для биологов и медиков. М.: Академия наук СССР. 1963. 323 с.

75 Урбах В.Ю. Биометрические методы. Статистическая обработка опытных данных в биологии, сельском хозяйстве и медицине. М.: Наука, 1964. 415 с.

76 Урбах В.Ю. Статистический анализ в биологических и медицинских исследованиях. М.: Медицина, 1975. 295 с.

77 Фелингер А.Ф. Статистические алгоритмы в социологических исследованиях. Новосибирск: Наука, 1985. 385 с.

78 Холлендер М. Вулф Д.А. Непараметрические методы статистики. / Пер. с англ. под ред. Ю.П. Адлера и Ю.Н. Тюрина М.: Финансы и статистика, 1983. 518с.

79 Чиркина Р.Т. Психодннамические факторы памяти. Дипломная работа выпускницы кафедры социальной психологии факультета психологии СПбГУ. СПб., 1995. 80 с.

80 Шеффс Г. Дисперсионный анализ. М.: Наука, 1980. 512с.

Курс «Математические методы в психологии»

(Материалы для самостоятельного изучения студентам психологам и социальным работникам)

Лекция № 2

СТАТИСТИЧЕСКИЙ АНАЛИЗ

ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

Вопросы:

1. Методы первичной статистической обработки результатов эксперимента

2. Методы вторичной статистической обработки результатов эксперимента

Краткое содержание

Методы первичной статистической обработки результатов эксперимен­та.

Общее представление о методах статистического анализа эксперименталь­ных данных, назначение этих методов. Деление статистических методов на первичные и вторичные. Основные показатели, получаемые в результате пер­вичной обработки экспериментальных данных. Вычисление средней арифме­тической. Определение дисперсии. Установление примерного распределения данных. Определение моды. Характеристика нормального распределения. Вы­числение интервалов.

Методы вторичной статистической обработки результатов эксперимента.

Способы вторичной статистической обработки результатов исследования. Ре­грессионное исчисление. Сравнение средних величин разных выборок. Срав­нение частотных распределений данных. Сравнение дисперсий двух выборок. Установление корреляционных зависимостей и их интерпретация. Понятие о факторном анализе как методе статистической обработки.

Способы табличного и графического представления результатов экспе­римента.

Виды таблиц и их построение. Графическое представление экспери­ментальных данных. Гистограммы и их применение на практике.

Вопрос 1

МЕТОДЫ ПЕРВИЧНОЙ СТАТИСТИЧЕСКОЙ ОБРАБОТКИ РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТА

Методами статистической обработки результатов экспери­мента называются математические приемы, формулы, способы количественных расчетов, с помощью которых показатели, по­лучаемые в ходе эксперимента, можно обобщать, приводить в си­стему, выявляя скрытые в них закономерности.

Речь идет о та­ких закономерностях статистического характера, которые су­ществуют между изучаемыми в эксперименте переменными ве­личинами.

1. Некоторые из методов математико-статистического анализа позволяют вычислять так называемые элементарные математические статистики, характеризующие выборочное распреде­ление данных, например

*выборочное среднее,

*выборочная диспер­сия,

*мода,

*медиана и ряд других.

2. Иные методы математической статистики, например

дисперсионный анализ,

регрессионный ана­лиз, позволяют судить о динамике изменения отдельных статис­тик выборки.

3. С помощью третьей группы методов, скажем,

*кор­реляционного анализа,

факторного анализа,

методов сравнения выборочныеа данных, можно достоверно судить о статистических связях,

существующих между переменными величинами, кото­рые исследуют в данном эксперименте.

Все методы математико-статистического анализа условно де­лятся на первичные и вторичные1.

1 Приводимые здесь определения и высказывания не всегда являются до­статочно строгими с точки зрения теории вероятностей и математической ста­тистики как сложившихся областей современной математики. Это сделано для лучшего понимания данного текста студентами, не подготовленными в облас­ти математики:

Первичными называют мето­ды, с помощью которых можно получить показатели, непосред­ственно отражающие результаты производимых в эксперимен­те измерений.

Соответственно под первичными статистически­ми показателями имеются в виду те, которые применяются в са­мих психодиагностических методиках и являются итогом на­чальной статистической обработки результатов психодиагности­ки.

Вторичными называются методы статистической обработки, с помощью которых на базе первичных данных выявляют скры­тые в них статистические закономерности.

К первичным методам статистической обработки относят, на­пример,

*определение выборочной средней величины,

*выбороч­ной дисперсии,

*выборочной моды и

*выборочной медианы.

В чис­ло вторичных методов обычно включают

*корреляционный ана­лиз,

*регрессионный анализ,

*методы сравнения первичных ста­тистик у двух или нескольких выборок.

Рассмотрим методы вычисления элементарных математичес­ких статистик, начав с выборочного среднего.