Смекни!
smekni.com

Литература - Другое (книга по генетике) (стр. 13 из 64)

ментов микроворсинок кишечника плода (Гобунова и др.,1989;

Баранов и др.,1991).

Методами направленного мутагенеза (gene targeting

см. Главу VIII) в различных лаборатория США и Великобритании

осуществлено успешное конструирование трансгенных моделей

муковисцидоза на мышах (Clarke, et al., 1992; Colledge et

al., 1992; Dorin et al., 1992; Snouwaert et al., 1992). Вы-

яснены признаки сходства и некоторые межвидовые различия

проявления мутации гена CFTR у мышей и человека. Показано,

что различные мутации этого гена по-разному реализуются в

фенотипе СFTR дефицитных мышей. Так, в одной из трансгенных

линий отмечено преимущественное поржаение легких, у других -

поджелудочной железы и кишечника. В одной мутантной линии

наблюдается гибель большого числа зародышей от причин, сход-

ных с мекониальным илеусом. Таким образом, эти линии

представляют собой идеальные модели для исследования молеку-

лярных основ патогенеза муковисцидоза, а также для разработ-

ки и испытания терапевтических мероприятий, включая геноте-

рапию. Как уже отмечалось в предыдущей главе, программы ге-

нотерапии муковисцидоза реализуются по крайней мере в 7

центрах США и двух центрах Западной Европы (Великобритания и

Франция). Уже успешно осуществлены не только апробации ген-

ноинженерных конструкций на мутантных культурах клеток и мо-

дельных животных, но начаты и успешно проводятся клинические

испытания генотерапевтического лечения муковисцидоза на 70

пациентах. Исследования по генотерапии муковисцидоза, нача-

тые в нашей стране пока проводятся на уровне клеточных куль-

тур.

10.4.2 Миодистрофия Дюшенна.

Миодистрофия Дюшенна - сцепленная с полом мышечная

дистрофия; выделяют две клинические формы: тяжелую - мио-

дистрофию Дюшенна (МД) и гораздо более мягкую - миодистрофию

Беккера (МБ). Ген миодистрофии Дюшенна (DMD) - один из самых

крупных известных генов человека, кодирует белок дистрофин,

входящий в состав сарколеммы мышечного волокна. При МД дист-

рофин либо полностью отсутствует, либо деградирует вскоре

после синтеза. При форме Беккера, как правило, дистрофин

присутствует, хотя и в измененном, чаще всего в укороченном

состоянии.

В соответствии с современными представлениями (Ahn,

Kunkel, 1993) огромный DMD-ген находится под контролем слож-

ной системы регуляции транскрипции и сплайсинга. По крайней

мере, 5 независимых промоторов осуществляют альтернативную

специфическую транскрипцию первых экзонов в разных тканях и

на разных стадиях эмбрионального развития. 3 промотора

экспрессируют полноразмерную молекулу дистрофина, в то время

как 2 осущесвляют экспрессию последних доменов взаимоисклю-

чающим способом. Высоко консервативные последовательности 6-

и экзонов, кодирующих C-конец белка, альтернативно сплайси-

руются, образуя несколько структурно различающихся форм

дистрофина, осуществляющих различные функции. Так, идентифи-

цирована 6.5-кб мРНК, транскрибируемая с DMD-гена и являюще-

еся, по-видимому, его основным продуктом в не-мышечных тка-

нях, включая мозг (Bar et al.,.1990). Соответствующий белок

значительно отличается от дистрофина и его уровень в некото-

рых не-мышечных тканях сопоставим с количеством дистрофина в

мышцах. Описан также 4.8-кб транскрипт того же локуса,

экспрессирующийся во многих типах тканей, но особенно в

Шванновских клетках проводящей нервной системы, где сам

дистрофин отсутствует (Blake et al., 1992). Этот белок полу-

чил название апо-дистрофин-1. Клонирован и секвенирован еще

один 2.2-кб транскрипт DMD-гена, кодирующий аподистро-

фин-3, экспрессирующийся в позднем эмбриогенезе (Tinsley et

al., 1993).

В 60% случаев в гене DMD у больных мальчиков обнаружи-

ваются протяженные делеции, захватывающие от одного до

нескольких соседних экзонов и сосредоточеные, обычно, в двух

"горячих" районах - в области 5'-конца гена (экзоны 6-19) и

в 3'- конце (экзоны 40-53), при этом 30% делеций локализова-

ны в проксимальной части гена и 70% - в дистальной. Прокси-

мальные делеции возникают, по-видимому, в раннем эмбриогене-

зе и имеют больше шансов стать "семейными" мутациями.

Дистальные делеции возникают позднее и чаще встречаются, как

изолированные случаи. Считается, что в спорадических случаях

повторный риск рождения больного ребенка при проксимальной

делеции составляет 30%, тогда как при дистальной - только 4%

(Passos-Bueno et al., 1992).

Отмечены популяционные особенности паттерна делеций в

разных европейских популяциях, а также в популяциях России и

стран СНГ (Baranov et al., 1993). У некоторых пациентов де-

летирован не только весь ген, но достаточно протяженные

соседние области. Очень часто концы делеций локализованы в

центральной части дистрофинового гена. Так в интроне 44,

протяженностью 160-180 кб, расположено около 30% точек раз-

рыва всех делеций. Показано, что проксимальный конец одной

из делеций в интроне 43 расположен внутри транспозон-подоб-

ного элемента, принадлежащего THE-1 семейству ретротранспо-

зонов (Pizzuti et al.,1992). Описан еще один пациент, у ко-

торого делеция оканчивается в THE-1 элементе. Эти элементы,

размером 2.3 кб, фланкированные 350-нуклеотидными LTR, пов-

торены около 10 000 раз в геноме человека. Гипотеза неста-

бильности DMD-гена, вызванная присутствием транспозон-подоб-

ного элемента, привлекается также для обьяснения нескольких

случаев обнаружения различий в молекулярном дефекте у паци-

ентов, принадлежащих одной и той же родословной, то есть

имеющих мутацию общего происхождения (Miciak et al.,1992). В

2-х случаях дупликаций из 8, для которых был проведен сик-

венс концевых участков, показано присутствие Alu-элементов.

В остальных 6 случаях рекомбинация осуществлялась между не-

гомологичными последовательностями (Hu, Worton, 1992).

Прямой корреляции между тяжестью течения заболевания и

протяженностью делеции не отмечается, но различия между фор-

мами Дюшенна и Беккера, в общем случае, связаны с наличием

или отсутствием сдвига рамки считывания. Ген дистрофина мо-

жет быть вовлечен также в другие структурные перестройки -

дупликации, транслокации. Так, примерно 5% мутаций гена

дистрофина составляют дупликации и около 35%-точечные мута-

ции, преимущественно, микроделеции (от 1 до нескольких нук-

леотидов), а также нонсенс мутации. Относительно высокий

процент нонсенс мутаций в гене дистрофина связывают с

присутствием большого количества глютаминовых триплетов, му-

тации в котором часто приводят к образованию стоп-кодона.

Крайне редки миссенс мутации. Считается, что в 30% семей с

МД и МБ мутации спонтанного происхождения и возникают преи-

мущественно в оогенезе, в остальных семьях это наследствен-

ные формы.

Разработаны очень эффективные методы диагностики деле-

ций в DMD-гене, основанные на мультиплексной ПЦР. Одновре-

менное тестирование 18 экзонов + промоторной части гена поз-

воляет выявить до 98% всех крупных делеций гена (Baranov et

al., 1993). Для обнаружения гетерозиготного носительства де-

леций используется метод RT PCR, то есть изоляция эктопи-

ческой DMD-мРНК из клеток крови, обратная транскрипция, амп-

лификация кДНК, рестрикционный анализ и секвенирование

(Roberts et al.,1991). Для этой же цели применяется метод

иммунодетекции мутантного белка в белковом лизате мышц и на

гистологических срезах биоптатов мышц (Arahata et

al.,1989). При отсутствии идентифицируемой делеции применяют

косвенный метод ДНК-диагностики с использованием внутриген-

ных полиморфных сайтов: pERT87-8/Taq1; pERT87-15/BamH1;

124/Pst1;16intron/ Taq1, и аллельных вариантов динуклеотид-

ных СА повторов в интронах 49 и 50 - STR-49; STR-50 (Малыше-

ва и др., 1991; 1992; Евграфов, Макаров, 1987; Евграфов и

др., 1990).

Серьезную проблему для диагностики гетерозиготного

носительства и, следовательно, для медико-генетического

консультирования предствляют случаи, так называемого, гонад-

ного мозаицизма - присутствие в соматических клетках гонад

женщины-неносительницы мутаций гена дистрофина, что, в свою

очередь, приводит к появлению нескольких генераций (клонов)

половых клеток (ооцитов) с мутанынм и нормальным генами

дистрофина. Предполагается, что такие мутации могут возни-

кать еще на уровне первичных половых клеток, то есть на ран-

них стадиях внутриутробного развития будущей матери. По ори-

ентировочным оценкам примерно 6-7% всех спорадических случа-

ев являются следствием гонадного мозаицизма у матери. Оце-

нить величину аберрантного клона ооцитов практически не

представляется возможным. В связи с этим прогноз в отношении

здоровья следующего ребенка в семьях, в которых у матери

больного МД не удается определить гетерозиготное носительст-

во, весьма затруднен. Эмпирически определено, что при нали-

чии спорадического случая рождения ребенка с МД и при

отсутствии прямых молекулярных доказательств гетерозиготного

носительства мутации гена дистрофина у матери риск повторно-

го рождения больного ребенка может достигать 14% (Essen et

al.,1992).

У многих пациентов с миопатией Дюшенна при иммуногисто-

химическом окрашивании мышц обнаруживаются редкие дистро-

фин-положительные волокна. Однако, при использовании антител

с антигенными детерминантами, кодируемыми делетированным

участком гена, окрашивания не происходит и это позволяет от-

вергнуть гипотезу соматического мозаицизма. Наиболее вероят-

ный механизм такого явления - возникновение второй сомати-

ческой делеции в мышечных клетках, устраняющей сдвиг рамки

считывания, вызванный основной делецией. В результате му-

тантный ген может транскрибироваться с образованием стабиль-