Смекни!
smekni.com

Литература - Другое (книга по генетике) (стр. 7 из 64)

ней. Отдельно представлены данные по клонированным генам,

для которых известен первичный молекулярный дефект. При этом

количество различных идентифицированных мутантных вариантов

для разных генов колеблется от одного до нескольких сотен.

Издания содержат также список доступных мутантных клеточных

линий.

Каждому локализованному менделирующему локусу в этой

энциклопедии присвоен шестизначный номер (MIM), первая цифра

которого определяет характер наследования: 1 - для аутосом-

но-доминантных генов, 2 - для аутосомно-рецессивных, 3 и 4-

для генов, локализованных в X- и в Y-хромосомах, соот-

ветственно, 5 - для митохондриальных генов. Четыре цифры,

следующие после точки непосредственно за шестизначным номе-

ром, предназначены для кодирования различных мутантных вари-

антов данного локуса. Издания выпускаются как в печатной

форме, так и в компьютерном варианте (OMIM) на дискетах или

на компакт-дисках. В последнем случае они снабжены програм-

мами, позволяющими осуществлять поиск по любой позиции и

проводить постоянное обновление энциклопедии текущей инфор-

мацией. Программы OMIM совместимы с другими базами генети-

ческих данных, в первую очередь, с GDB (Genome Data Base),

содержащей полную информацию (включая последовательности

ДНК) обо всех картированных генах, ДНК-маркерах и ДНК-зондах

человека, а также и с GenBank - полной базой данных всех из-

вестных нуклеотидных gоследовательностей ДНК.

В последнем 11-ом издании энциклопедии МакКьюсика со-

держатся сведения о 6678 картированных менделирующих локусах

человека (McKusick, 1994). Из них 4458 генов с аутосомно-до-

минантным характером наследования, 1730 - с аутосомно-ре-

цессивным, 412 генов локализовано в X-хромосоме, 19 - в

Y-хромосоме и 59 - в митохондриальной ДНК. Для более чем

2800 картированных генов определена их функция. С моногенны-

ми заболеваниями связано 770 картированных локусов, а общее

число нозологических форм, для которых гены картированы,

включает 933 заболевания. При этом более 420 генов

наследственных болезней уже клонированы и для каждого из

этих генов описано от одного до нескольких сотен мутантных

вариантов аллелей, характеризующихся различным фенотипи-

ческим проявлением.

Различные хромосомы и их участки картированы с разной

степенью детализации. На самой крупной по размерам хромосоме

1 картировано вдвое меньше генов, чем на Х-хромосоме ( 200 и

400 соответственно). Плотность уже картированных генов в

разных хромосомах очень неравномерна. Так, хромосома 19 со-

держит 178 генов, тогда как хромосома 13 только 40, при этом

первая больше второй. Хромосомы 17 и 18 примерно равны по

величине, но на первой уже картировано 180 генов, а на вто-

рой- только 26. На хромосоме 2 картировано примерно такое же

количество генов (около 175), как и на втрое меньше её по

размерам хромосоме 17. Существеные различия в числе картиро-

ванных генов отмечаются и внутри различных участков хро-

мосом. К примеру, 19 из 43 генов хромосомы 21 локализованы в

сегменте 21q22.3, составляющем лишь 20% длинного плеча. Об-

ласть 9q34 занимает 10% хромосомы 9, но содержит 27% генов -

38 из 141 (Antonarakis, 1994). Число подобных примеров не-

равномерного распределения картированных генов по хромосо-

мамс может быть значительно увеличено.

Более 10 лет тому назад был полностью просеквенирован

митохондриальный геном (Anderson et al., 1981), состоящий из

16 569 нуклеотидов и содержащий 37 генов, 22 из которых это

гены транспортных РНК, 2 гена рибосомальной РНК и 13 белко-

вых генов, кодирующих субьединицы комплексов окислительного

фосфорилирования (OXPHOS). Следует отметить, что 56 субьеди-

ниц этого комплекса кодируется ядерными генами (McKusick:

1994). Митохондриальная ДНК очень плотно насыщена кодирующи-

ми участками, так как митохондриальные гены не содержат инт-

ронов и имеют очень ограниченные размеры некодирующих флан-

кирующих ДНК. В настоящее время описано достаточно много бо-

лезней, связанных с мутациями в митохондриальном геноме, и

все они развиваются вследствие нарушений в системе окисли-

тельного фосфорилирования.

Мы уже упоминали о том, что в настоящее время проклони-

ровано около 20 000 анонимных последовательностей кДНК, вы-

деленных из тканеспецифических библиотек генов и представля-

ющих около 10-15% всех генов человека. Хотя этих последова-

тельностей пока нет на картах генов, секвенирование, со-

поставление с компьютерными базами данных и гибридизация in

situ позволят уже в самое ближайшее время провести их иден-

тификацию и локализацию (McKusick, Amberger, 1993).

Следует отметить, что каждый картированный ген и поли-

морфный локус сами по себе автоматически становятся точками

отсчета в геноме, то есть молекулярными маркерами. Наряду с

этим, продолжается интенсивное насыщение генома новыми моле-

кулярными маркерами типа STS ( sequence tagged sites) и мик-

росателлитными повторами типа STR (short tandem repeats)

(cм. Главу II). К сентябрю 1994г Genome Database (GDB) вклю-

чала 6691 STR-сайтов и 3 752 из них (56%) имели уровень ге-

терозиготности более 60%. Карты сцепления для индексных мар-

керов сконструированы, в основном, по результатам генотипи-

рования сорока CEPH референтных семей (см.Глава II,2.3).

Среднее расстояние между соседними маркерами варьирует от 2

сМ для хромосомы 21 до 5 сМ для самых крупных хромосом с

очень небольшим числом участков в геноме с расстоянием между

маркерами большим, чем 10 сМ. GDB содержит 672 гена, локали-

зованных на картах сцепления индексных маркеров, из общего

числа 3485 клонированных генов (Guapay et al., 1994). Соз-

данные в последние годы достаточно подробные геномные карты

сцепления молекулярных маркеров в масштабах 13, 0; 5,0 и да-

же 2,9 сантиморганид; автоматизация процесса генотипирования

маркерных микросателлитных (STR) аллелей; большое число уже

картированных структурных генов, анонимных ДНК-последова-

тельностей значительно упрощают и, главное, ускоряют процесс

генетического картирования. Если в 1992г. в распоряжении

иследователей было только 814 динуклеотидных полиморфных

сайтов (Weissenbach et al.,1992), то уже к маю 1994 г. их

число возросло до 3 300 (Guyapay et al.,1994) , а к концу

года - до 5 000- 6 000 (Shmitt, Goodfellow, 1994). Столь же

быстрыми темпами нарастает число молекулярных маркеров и в

геноме лабораторных мышей (Service, 1994). По всей види-

мости, человек и лабораторная мышь будут первыми млекопитаю-

щими с полностью расшифрованными геномами.

Картирование генов человека и выяснение первичной нук-

леотидной последовательности человеческого генома составляют

основные, взаимосвязанные задачи Международной программы

"Геном Человека". Официально эта научная программа с участи-

ем ведущих молекулярно-генетических лабораторий США, Запад-

ной Европы, России и Японии оформилась в 1990г. Однако, за-

долго до приобретения официального статуса, в этих странах

проводились важные молекулярные исследования по изучению ге-

нома человека и картированию его генов. История отечествен-

ной программы началась в 1987г. Её инициатором и безусловным

лидером в течение многих лет был академик А.А.Баев. По его

настоянию в 1989г. она стала одной из ведущих Государствен-

ных научно-технических программ СССР. Основные разделы этой

программы как в России, так и во всем мире включают три

главных направления научных исследований: 1. Картирование и

секвенирование генома; 2. Структурно-функциональное изучение

генома; 3. Медицинскую генетику и генотерапию (Баев,1990;

1994).

Предполагалось, что основной раздел программы, касаю-

щийся секвенирования всего генома, то есть выяснения первич-

ной последовательности всей молекулы ДНК одной клетки чело-

века длиной около 1,5 метров, состоящей из 3.5х10!9 нуклео-

тидов, будет завершен уже к 2 005 году. Однако, серьезные

технические усовершенствования этого трудоемкого процесса,

его автоматизация и резкое снижение себестоимости (от 1$ США

за один шаг в 1990г. до 0,2$ в 1995г.) позволяют надеяться,

что эта гигантская молекула, несущая информацию о всей прог-

рамме индивидуального развития человека и его эволюции будет

полностью расшифрована уже к 2 000 году ! (Marshall, 1995).

Естественно, что в итоге этой работы будут идентифици-

рованы и все гены человека, то есть будет точно определено

их число, взаиморасположение на генетической карте и струк-

турно-функциональные особенности. Предполагается, что осу-

ществление этого проекта, помимо колоссальных теоретических

обобщений для фундаментальных наук, окажет огромное влияние

на понимание патогенеза, предупреждение и лечение

наследственных болезней, значительно ускорит исследование

молекулярных механизмов, лежащих в основе развития очень

многих моногенных нарушений, будет способствовать более эф-

фективному поиску генетических основ мультифакториальных за-

болеваний и наследственной предрасположенности к таким широ-

ко распространенным болезням человека как атеросклероз, ише-

мия сердца, психиатрические и онкологические заболевания.

ГЛАВА X.

МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКАЯ ХАРАКТЕРИСТИКА НЕКОТОРЫХ

МОНОГЕННЫХ ЗАБОЛЕВАНИЙ.

Раздел 10.1. Хромосомная локализация и принципы класси-

фикации генов наследственных болезней.

Раздел 8.1 Хромосомная локализация и принципы классифи-

К настоящему времени на хромосомах человека картирова-

но около 800 генов, мутации которых приводят к различным

наследственным заболеваниям. Количество моногенных заболева-

ний, для которых известна локализация контролирующего гена,

еще больше и приближается к 950 за счет существования ал-