Смекни!
smekni.com

Литература - Другое (книга по генетике) (стр. 56 из 64)

ти и огромной разрешающей способности. Загрязнение материала

особенно опасно в тех случаях, когда прогноз дается на осно-

ве анализа амплифицированных фрагментов ДНК. Попавшие в тес-

тируемые образцы клетки чужеродного происхождения могут пос-

лужить источником донорской ДНК для ПЦР и тогда может быть

получено несоответствующее действительности заключение о

том, что ребенок будет здоров. Риск подобных ошибок может

быть значительно уменьшен при работе в стерильных условиях и

при постановке анализов в нескольких параллельных пробах.

Конечно, в любом диагностическом центре возможны лаборатор-

ные ошибки чисто технического порядка, не зависящие от ис-

пользуемых методов тестирования. Однако, достоверность прог-

нозирования, основанного на прямом анализе мутантных аллелей

плода, обычно, превышает 99%. При использовании косвенных

методов молекулярной диагностики появляется дополнительный

риск ошибки, связанный с возможностью рекомбинации между му-

тантным аллелем и маркерным локусом (особенно при больших

размерах гена, как, например, в случае гена дистрофина).

Конкретное значение этого риска зависит от взаимного распо-

ложения используемых для диагностики маркеров и соответству-

ющих мутантных аллелей. Обычно, для молекулярной диагностики

используют маркеры, частота рекомбинации которых с мутантны-

ми аллелями гена не превышает десятых, а иногда и сотых до-

лей процента.

В случае неблагоприятного прогноза в отношении здоровья

будущего ребенка решение о прерывании или продолжении бере-

менности принимают родители на основании предоставленного в

их распоряжение общего заключения. После рождения ребенка

или прерывания беременности желательно проводить верификацию

диагноза всеми доступными для этого методами, включая и те,

которые были использованы для постановки пренатального диаг-

ноза.

ЗАКЛЮЧЕНИЕ

При всем разнообразии тем, затронутых в монографии,

весь изложенный в ней материал, по-сути, касается трех

основных проблем : 4(1) 0генетическое картирование и геном че-

ловека, 4(2) 0молекулярная диагностика генных болезней, 4(3)

генокоррекция наследственных дефектов и генотерапия. В реше-

нии каждой из названных проблем достигнуты серьезные успехи.

Напомним некотрые из них.

Известно, что первый ген человека (ген цветной слепо-

ты-дальтонизма) картирован на Х-хромосоме человека в

1911г. Первый аутосомный ген - только в 1968г. К 1973 на

всех хромосомах человека было картировано всего 64 гена, а к

1994г. на генетических картах уже локализовано свыше 60 000

маркерных ДНК последовательностей (главным образом, фрагмен-

тов кДНК экспрессирующихся генов-EST см.Главу III.), а также

4более 05 000 полноразмерных структурных генов. Благодаря мно-

гочисленным полиморфным сайтам и, главным образом, микроса-

теллитным молекулярным маркерам, созданы подробные (1,5-2

сантиморганные) генетические карты для каждой хромосомы че-

ловека. Это позволило перейти от функционального к позицион-

ному картированию, т 4о 0е 4сть 0картированию новых генов не-

посредственно на физической карте ДНК целого генома.

По мнению авторитетных специалистов по генетическому

картированию таких как Питер Гудфеллоу, Поль Вайссенбах и

др 4угих, 0дальнейшее наращивание плотности молекулярных марке-

ров на хромосомах человека уже лишено смысла, тем более, что

в процессе идетификации все новых и новых генов методом EST,

новые полиморфные сайты все равно будут найдены. Не менее

оптимистично обстоят дела и с секвенированием, т 4о 0е 4сть 0вы-

яснением первичной нуклеотидной последовательности всей

двухметровой молекулы ДНК человека. Достаточно заметить, что

первоначальная стоимость секвенирования одной пары нуклеоти-

дов оценивалась в 1 $, сейчас она составляет уже около 40

центов и продолжает снижается. Причина этого - широкая авто-

матизации монотонного процесса секвенирования. Так, 10 робо-

тов фирмы Applied Biosystems за одну неделю секвенируют бо-

лее 30 000 000 п 4ар 0о 4снований. 0Дальнейшее совершенствование

технологии секвенирования 4, 0создани 4е 0принципиально новых под-

ходов (метод "чипов"-Мирзабеков А.Д., Ed.Southern ),

4повышающих в десятки раз 0степен 4ь 0автоматизации этого про-

цесса в высокоспециализированных центрах позволяет наде-

яться, что секвенирование всего генома человека будет завер-

шено в 2 006 году, а вполне вероятно и к 2 000 году!

Однако, само по себе завершение гигантского по замыслу и

грандиозного по реализации научного проекта "Геном человека"

отнюдь не означает, что процесс познания генома завершен.

Уже сейчас становится очевидным, что не существует какого-то

усредненного генома человека, каждый геном как и каждый че-

ловек сугубо индивидуален. Эта индивидуальность генома про-

является не только на уровне отдельной личности, но и на

уровне этнических групп, наций, отдельных популяций и рас

(Cavalli-Sforsa,1994). Геном человека как система динамич-

ная, очень разнообразен. Анализ этого разнообразия

(diversity) - одно из важнейших продолжений программы Геном

человека. Еще более актуальным является выяснение "функцио-

нальной карты генома". Секвенирование позволит расшифровать

порядок всех 3 4.5 0х 10 4! 09 нуклеотидов. Но ведь это только на-

чало. Определить границы генов, выяснить положение много-

численных регуляторных элементов, их интронно-экзонную

структуру и, наконец, функциональное назначение каждого из

60 000 генов, назначение которых пока неизвестно - вот сле-

дующая поистине глобальная задача молекулярной генетики.

Вполне вероятно, что именно на этом пути удастся решить за-

гадку "избыточной ДНК", понять эволюцию (филогенез) генома

человека и ,возможно, расшифровать партитуру симфонии жизни

- т 4о 0е 4сть 0последовательность включения и выключения генов в

ходе онтогенеза.

На генетические карты человека уже в 1994г. нанесено

933 гена, мутации которых приводят к различным наследствен-

ным заболеваниям, причем более 400 из них проклонированы,

т 4о 0е 4сть 0выделены в чистом виде и размножены вне оргаизма че-

ловека в составе ДНК фагов, вирусов, дрожжей и бактерий. Для

многих из этих генов, в особенности, сопряженных с наиболее

частыми, социально значимыми заболеваниями, подробно изучены

спектры мутаций, охарактеризованы аллельные полиморфизмы и

разработаны схемы молекулярной диагностики. Причем, если в

1993г. таких заболеваний было около 130 (Bob Williamson), то

в 1994 - более 600. По-сути, уже сегодня каждый наследствен-

ный недуг, ген которого картирован, доступен молекуярной ди-

агностике прямыми или косвенными методами.

Помимо моногенных болезней, проблемы молекулярной диаг-

ностики которых в значительной степени уже решены, все боль-

ше внимания сегодня уделяют мультифакториальным заболевани-

ям. На повестке дня молекулярная диагностика предрасположен-

ности к таким широкораспространенным недугам как атероскле-

роз, ишемия сердца, онкологические 4, психиатрические 0заболе-

вания, диабет и мн 4огое 0друг 4о 0е. Выяснение генетической приро-

ды этих болезней, равно как досимптоматическая диагностика

многих моногенных болезней с поздней манифестацией, ставит

перед исследователями 4, 0т 4о 0е 4сть 0молекулярными биологами и

врачами 4, 0проблему целесообразности такой досимптоматической

диагностики, права личности на исключительность знаний о

собственном геноме, точнее о тех мутациях и генетических

предрасположенностях которые закодированы в нем еще до рож-

дения. Для некоторых заболеваний 4( 0муковисцидоз, фенилкетону-

рия) такая ранняя диагностика, безусловно, целесообразна,

так как позволяет начать лечение до начала заболевания. Для

тех же нозологий, где реальной терапии пока нет (хорея Ген-

тингтона, другие болезни "экспансии", миодистрофия Дюшенна и

др.) целесообразность такой диагностики и, главное, конфи-

денциальность полученной информации широко обсуждаются.

Да, уже сейчас вполне реально говорить о "генетическом

паспорте новорожденных", т 4о 0е 4сть 0о том, что уже вскоре после

рождения с помощью автоматизированной системы удасться проа-

нализировать весь спектр наиболее частых мутаций широко

распространенных заболеваний как моногенной так и мультифак-

ториальной природы 4, в 0том числе и генов, мутации которых с

высокой вероятностью могут привести к раку молочной железы,

толстого кошечника, к атеросклерозу, диабету и мн 4огим 0другим

ттяжелым недугам. Жить 4, 0н 4и 0в чем себя не ограничивая, засу-

нув как страус голову в песок, либо, зная, что у вас мутация

в гене глутатионтранферазы, а следовательно, высока вероят-

ность болезней легких (особенно рака) воздержаться от куре-

ния ? Что лучше, добровольные ограничения и периодические

осмотры или состояние счастливого неведения, грозящее неми-

нуемой катастрофой ? А сколько мультифиакториальных заболе-

ваний можно избежать, зная о слабых и сильных сторонах свое-

го генома! В настоящее время в США провдятся массовые опросы

населения, цель которых выяснить целесообразность досимпто-

матической диагностики в семьях высокого риска, доступность

(конфиденциальность) этой информации для членов семьи, нани-

мателей, страховых компаний и пр. Иными словами, практически

овладев плодом Древа Познания - собственным геномом- челове-

чество поставлено перед дилеммой как сделать так, чтобы

польза от него оказалась много весомее, чем потенциальный

вред. Неслучайно, сегодня уже на новом, молекулярном уровне