Смекни!
smekni.com

Литература - Другое (книга по генетике) (стр. 58 из 64)

(см.ниже). Следует также подчеркнуть, что качественный ска-

чок в области генной терапии, когда сам ген стал рассматри-

ваться как лекарственный препарат, стал возможен благодаря

тому, что предшествующие экспериментальные и клинические

исследования доказали безопасность генной терапии.

Вместе с тем, и в сегодняшних исследованиях по генной

терапии необходимо учитывать, что последствия манипулирова-

ния генами или рекомбинантными ДНК in vivo изучены недоста-

точно. Следует помнить, что введение в организм человека

последовательностей ДНК, не находящихся под контролем свойс-

твенных им регуляторных элементов, может приводить к трудно

предсказуемым измененим метаболических процессов и сопровож-

даться функциональным дисбалансом. Современные представления

о структуре генома и его взаимодействиях с экзогенными ДНК и

вирусными последовательностями, часто используемыми в ка-

честве векторов для переноса генов (см. 9.2), могут оказать-

ся недостаточными для прогнозирования возможных нежелатель-

ных или неконтролируемых последствий такого вмешательства.

Поэтому при разработке программ генной терапии принципиаль-

ное значение имеют вопросы безопасности предлагаемых схем

лечения как для самого пациента, так и для популяции в целом

(Anderson, 1992; Miller, 1992). Важно, чтобы при проведении

испытаний ожидаемый лечебный эффект или возможность получе-

ния дополнительной полезной информации превосходили потенци-

альный риск предлагаемой процедуры. Неслучайно, в странах с

наиболее продвинутым уровнем исследований в этой области,

особенно в США, медицинские протоколы с использованием смыс-

ловых последовательностей ДНК подвергаются обязательной экс-

пертизе в соответствующих комитетах и комиссиях. Клинические

испытания предложенной генотерапевтической процедуры возмож-

ны только после ее одобрения соответствующим законодательно

утвержденным органом. В США таковыми являются: Консультатив-

ный Комитет по Рекомбинантным ДНК (Recombinant DNA Advisory

Committee - RAC), Комитет по лекарствам и пищевым продуктам

(Food and Drug Administration -FDA), с последующим обяза-

тельным утверждением проекта директором Национального Инсти-

тута Здоровья (National Institute of Health) (Miller, 1992;

Anderson, 1992; Culver, 1994). В Европе такие протоколы сос-

тавляются и утверждаются в соответствии с рекомендациями Ев-

ропейской Рабочей Группы по Переносу Генов и Генной Терапии

(European Working Group on Human Gene Transfer and Therapy)

(Cohen-Haguenauer, 1995). Программы генной терапии для кли-

нических испытаний должны включать следующие разделы: обос-

нование выбора нозологии для проведения курса генной тера-

пии; определение типа клеток, подлежащих генетической моди-

фикации; схему конструирования экзогенной ДНК; обоснование

биологической безопасности вводимой генной конструкции,

включающая опыты на культурах клеток и на модельных (транс-

генных) животных; разработку процедуры ее переноса в клетки

пациента; методы анализа экспрессии введенных генов; оценку

клинического (терапевтического) эффекта; возможные побочные

последствия и способы их предупреждения (Culver, 1993; Co-

hen-Haguenauer, 1995).

Важнейшим элементом в программе генной терапии является

анализ последствий проводимых процедур. Этот контроль прово-

дят на всех этапах терапии, причем исследования выполняют на

различных уровнях. Прежде всего, после переноса гена осу-

ществляют поиск модифицированных клеток в организме пациента

и следят за динамикой этих клеток в определенных тканях.

Этот поиск может быть облегчен при наличии маркерного гена в

конструкции. Присутствие последовательностей экзогенной ДНК

в модифицированных клетках чаще всего идентифицируют с по-

мощью ПЦР. На следующем этапе производят анализ экспрессии

введенных генов путем идентификации и количественной оценки

соответствующего РНК-транскрипта, либо белкового продукта

гена. В тех случаях, когда это возможно, проводят анализ

коррекции первичного биохимического дефекта. Затем, все по-

лученные данные сопоставляют с результатами комплексного ме-

дицинского обследования и вносят необходимые исправления и

добавления в проводимую схему лечения.

Раздел 9.2. Типы генотерапевтических вмешательств, вы-

бор клеток-мишеней.

Рассмотрим наиболее общие принципы, лежащие в основе

построения программ генной терапии. Итак, генная терапия

предполагает введение последовательностей ДНК в клетки-мише-

ни. Она проводится либо с целью коррекции наследственной па-

тологии, возникшей вследствие генетического дефекта, либо

для придания этим клеткам новых функций, способствующих уст-

ранению патологических процессов. В первом случае, в орга-

низм больного вводят нормально работающий гомолог дефектного

гена. Второй подход применяют при лечении, таких заболева-

ний, как опухоли или инфекции. В этих случаях вводят гены,

обладающие условным цитотоксическим эффектом или способству-

ющие формированию выраженного иммунного ответа. Мишенями для

таких генов служат пораженные ткани, иммунные клетки, специ-

фическим образом проникающие в эти ткани, либо предваритель-

но трансформированные in vitro другие клетки. Таким образом,

в зависимости от характера заболевания и предполагаемого ге-

нотерапевтического подхода объектом генетической трансфекции

могут служить самые разные соматические клетки, как несущие

дефектный ген, так и нормальные клетки, приобретающие тера-

певтические свойства после трансфекции. В зависимости от

способа введения экзогенных ДНК в геном пациента генная те-

рапия может проводиться либо в культуре клеток (ex vivo),

либо непосредственно в организме (in vivo). Клеточная генная

терапия или терапия ex vivo предполагает выделение и культи-

вирование специфических типов клеток пациента, введение в

них чужеродных генов, отбор трансфецированных клеток и реин-

фузию их тому же пациенту (Рис. 9.1). В настоящее время

большинство допущенных к клиническим испытаниям программ

генной терапии использует именно этот подход (Cul-

ver, 1994). Осуществление таких программ возможно лишь в

крупных специализированных центрах, требует больших матери-

альных затрат и высоких биотехнологий.

Генная терапия in vivo основана на прямом введении кло-

нированных и определенным образом упакованных последователь-

ностей ДНК в специфические ткани больного. При этом вводимые

ДНК, как правило, интегрируют с молекулами, обеспечивающими

их адресную доставку в клетки-мишени (см. 9.3). Этот очень

перспективный подход, расчитанный на массовое лечение широко

распространенных заболеваний, пока реально апробирован толь-

ко для лечения муковисцидоза (Crystal et al., 1994). Особен-

но перспективным для лечения генных болезней in vivo предс-

таляется введение генов с помощью аэрозольных или иньецируе-

мых вакцин. Аэрозольная генотерапия разрабатывается, как

правило, для лечения пульмонологических заболеваний, таких

как муковисцидоз, энфизема, рак легких, при которых обьекта-

ми генетической модификации являются специфические типы ле-

гочных клеток (Hoffman, 1991). Иньецируемые вакцины могут

использоваться для модификации различных типов клеток и со

временем, по-видимому, станут наиболее распространенным и

универсальным способом доставки чужеродного генетического

материала в любые ткани.

Эффективность курса генной терапии в значительной сте-

пени зависит от правильного выбора типов соматических кле-

ток, в которых должна бать проведена генетическая модифика-

ция. Так например, при лечении какого-либо наследственного

заболевания, обусловленного дефектом секреторного белка, ге-

нетической коррекции, в принципе, могут быть подвергнуты лю-

бые клетки, тогда как для нерастворимых или мембран-связан-

ных белков выбор ограничен теми клетками, где экспрессирует-

ся соответствующий ген (см.раздел 8.5). Разработке программы

генной терапии предшествуют тщательный анализ тканеспецифи-

ческой экспрессии соответствующего гена, идентификация пер-

вичного биохимического дефекта, исследование структуры,

функции и внутриклеточного распределения его белкового про-

дукта, а также биохимический анализ патологического процес-

са. Все эти данные учитываются при составлении соответствую-

щего медицинского протокола. Кроме того, план генотерапевти-

ческих вмешательств определяется также доступностью кле-

ток-мишеней, периодом их жизни и характером миграции в орга-

низме, эффективностью и специфичностью трансфекции кле-

ток, длительностью экспрессии введенного гена.

Наиболее перспективной представляется возможность гене-

тической модификации не самих уже дифференцированных клеток

с наследственным дефектом, а их предшественников, то есть

долго живущих стволовых клеток. В частности, многообещающей

является трансформация тотипотентных эмбриональных стволовых

клеток, которые при создании определенных микроусловий могут

дифференцироваться, практически, в любые соматические клетки

организма (Hodgson, 1995). Следует упомянуть в этой связи

предложенный недавно эффективный метод получения стволовых

клеток гемопоэтического ряда, перспективных для генотерапии

наследственных заболеваний крови (Berardi et al., 1995).

Как правило, определение типа клеток, подлежащих гене-

тической модификации, завершается оценкой результатов пере-

носа гена в системе in vitro и проведения экспериментов на

животных моделях в тех случаях, когда это возможно. Апроба-

цию процедуры генокоррекции наследственного заболевания про-