Смекни!
smekni.com

Литература - Другое (книга по генетике) (стр. 60 из 64)

в ядро и, если не разрушается эндогенными нуклеазами, то мо-

жет быть интегрирована в ДНК клетки. Такое, однако, случает-

ся достаточно редко. Известное исключение составляют мышцы,

в которых благодаря низкой активности эндогенных нуклеаз и

низкой пролиферативной активности введенная ДНК долго (до 1

года) может сохраняться и даже экспрессироваться в миофиб-

риллах (Hansen et al.,1991).

Эффективная доставка чужеродной ДНК непосредственно в

ядро клетки-мишени может быть достигнута путем микроинъекции

(метод применяемый сегодня почти исключительно для создания

трансгенных животных путем введения экзогенной ДНК в пронук-

леус оплодотворенной яйцеклетки - cм.Главу VIII); при помощи

электропорации (кратковременного воздействия сильным элект-

рическим полем); путем перфорации клеточных мембран золотыми

или вольфрамовыми микрочастицами коньюгироваными с чужерод-

ными ДНК и разогнанными до высокой скорости (метод бомбарди-

ровки). Эти методы доставки применимы, главным образом, для

клеток, культивируемых in vitro. Исключение составляет лишь

метод бомбардировки, который при наличии специального генно-

го "ружья" с успехом применяется и in vivo (Yang et

al., 1990).

Для повышения эффективности переноса обычно используют

системы доставки - соединения или группы соединений, взаимо-

действующие с ДНК с образованием компактных структур, облег-

чающих проникновение ДНК в клетки и защищающих ее от дейс-

твия нуклеаз (Власова и др., 1994). Самой простой системой

доставки является система кальций-фосфатной копреципитации,

широко применяемая для трансфекции клеток in vitro. Более

сложный и многообещающий вариант трансфекции представляет

собой рецептор-опосредованный транспорт, предусматривающий

создание достаточно сложной, обычно трехкомпонентной конс-

трукции: ДНК-поликатион + лиганд + вирус (Рис. 9.2). В ка-

честве лигандов используются специфические белки, такие как

трансферрин, эритропоэтин, асиалоглюкопротеин, коньюгирован-

ный с альбумином инсулин и некоторые другие, взаимодействую-

щие с клеточными рецепторами и обеспечивающие фиксацию ген-

ной конструкции на специфических клетках, то есть адресную

доставку чужеродной ДНК в клетки определенного типа (напри-

мер асиалоглюкопротеин - в клетки печени, трансферрин и

эритропоэтин - в клетки крови и.т.д). Лиганды ковалентно

присоединяются к связывающим и компактизующим чужеродную ДНК

катионным носителям (полилизину, DEAE-Dextran и др.).

Важным компонентом системы является аденовирус или его

N-концевой фрагмент, выступающие в качестве эффективных фу-

зогенных агентов, обеспечивающих выход экзогенной ДНК из эн-

досом после попадания ее в цитоплазму клеток-мишеней. Адрес-

ная доставка и эффективная защита от лизосомальных ферментов

обеспечивают высокую трансфекционную способность таких конс-

трукций, их несомненную перспективность для генной терапии

in vivo (Hodgson, 1995).

Мы уже упоминали о возможности сочетания векторного и

физико-химического подхода при конструировании систем для

переноса генов в клетки человека. Одна из таких систем осно-

вана на использовании филаментного фага fd для трансфекции

эпителиальных клеток. Гены fd, кодирующие белки оболочки фа-

га, экспрессируются на его поверхности. В один из них инсер-

тируют последовательность, кодирующую поли-L-лизин. Полили-

зиновые остатки в составе слитого белка связываются с плаз-

мидной ДНК и удерживают ее на поверхности фага. В другой ген

оболочки фага инсертируют последовательость ДНК, кодирующую

какой-либо агент, специфически связывающийся с апикальной

поверхностью эпителиальных клеток и интернализирующий (обес-

печивающий проникновение) фага внутрь клетки. С этой целью

были апробированы гены белков патогенных бактерий, поражаю-

щих кишечный эпителий - интерналин и инвазин, а также после-

довательности ДНК, кодирующие пептидные фрагменты вариабель-

ного района моноклональных антител Ab11. Было показано, что

во всех трех случаях достигается адресная доставка и интер-

нализация фага в клетки-мишени, то есть система успешно

функционирует.

Направленный перенос генов во многие типы клеток, со-

держащие трансферриновые рецепторы, может быть осуществлен

при комплексировании ДНК с трансферрином. Использование в

этом комплексе аденовирусного вектора существено облегчает

прохождение ДНК через эндосомы и попадание её в ядро. Иде-

альными белковыми лигандами для специфических клеточных ре-

цепторов могут служить моноклональные антитела или их фраг-

менты, направленные против тех элементов рецепторов, которые

находятся на наружной поверхности клеточной мембраны. Подоб-

ная система разработана для рецептор-опосредованного генного

переноса в эпителиальные клетки. Она основана на использова-

нии противо-секреторных SCFab-фрагментов антител для поли-

мерного иммуноглобулинового рецептора pIgR. Этот рецептор

транспортирует IgA и IgM в респираторные эпителиальные клет-

ки, связывая иммуноглобулины и интернализируя их путем эндо-

цитоза. Показано, что в системе in vitro частота трансфекции

эпителиальных клеток при использовании SCFab-поли-L-ли-

зин-ДНК комплекса такая же, как и при введении экзогенной

ДНК посредством трансферринового рецептора. Аналогичные под-

ходы могут быть применены для введения генов и в другие типы

клеток.

9.4.3 Липосомный метод трансфекции.

Эффективный внутриклеточный транспорт и защита от дег-

радации лизосомальными ферментами достигаются при использо-

вании в качестве векторов липосом-липидных пузырьков, обла-

дающих выраженными фузогенными свойствами - способностью

сливаться с клеточными мембранами. Особенно перспективны в

этом отношении липосомы, полученные на основе катионных ли-

пидов, обеспечивающих 100% связывание ДНК в конденсированные

нуклеолипидные частицы. Положительный заряд на поверхности

таких пузырьков обеспечивает их активное слияние с отрица-

тельно заряженными клеточной мембранами и прямое попадание

чужеродной ДНК в цитоплазму, минуя эндосомы и, соответствен-

но, не подвергаясь действию лизосомных гидролаз. Очень эф-

фективный перенос высокоочищенных ДНК или РНК-последователь-

ностей в соматические, особенно, в мышечные ткани может быть

осуществлен с помощью препаратов липофектина или липофекта-

мина (Caplen et al., 1994). Гораздо более высокая частота

трансфекции по сравнению с липосом-опосредованным переносом

получена в экспериментах на культурах клеток при использова-

нии ДНК-липидного комплекса с циклическим амфипатическим

пептидом грамицидином S.

Особенно перспективными в последнее время представляют-

ся комплексы, в которых липосомы коньюгируют с мембранными

антителами к определенным белкам-мишеням (иммунолипосомы)

либо с белками-лигандами (см.выше). Эти конструкции обеспе-

чивают эффективную адресную доставку чужеродной ДНК в клет-

ки-мишени. Подобная схема была успешно апробирована для пе-

реноса гена сывороточного альбумина человека в гепатоциты

линейных крыс Nagase с наследственной дисальбуминемией. До-

казано присутствие и экспрессия введенного таким образом ге-

на человека в клетках печени крыс. Аналогичные результаты

получены в опытах на линейных кроликах Watanabe, дефектных

по рецепторам липопротеинов низкой плотности - LDL. Эти жи-

вотные моделируют одно из наиболее частых моногенных заболе-

ваний человека - семейную гиперхолесеринемию. При внутривен-

ной иньекции кроликам липидного асиалогликопротеинового

комплекса с плазмидной ДНК, несущей нормальный LDL-ген, уро-

вень холестерина в крови животных устойчиво понижался.

Важным преимуществом рецептор-опосредованных систем на

основе липосом является их низкая иммунореактивность. Они

лишены и многих других недостатков, свойственных вирусным

векторным системам. Вместе с тем, до сих пор не решена проб-

лема низкой частоты трансформации клеток при липосомном пе-

реносе. Это обстоятельство существенно ограничивает примене-

ние липосом в генной терапии (Crystal, 1995). Тем ни менее,

в настоящее время рецептор-опосредованный вариант передачи

генетической информации в клетки эукариот с использованием в

качестве лигандов специфических антител, рецепторных белков,

а также вирусных последовательностей и липосом позволяет в

одной системе совместить преимущества физико-химических ме-

тодов переноса ДНК и вирусных векторов и потому представляет

один из наиболее перспективных и быстро развивающихся нап-

равлений в трансфекции эукариотических клеток.

9.4.4 Рекомбинантные вирусы.

Конструирование векторов на базе вирусов представляет

собой наиболее интересный и перспективный раздел генотера-

пии. Эволюционно сложившаяся система обеспечения эффективно-

го проникновения в клетки-мишени, а в случае ретровирусов и

система интеграции в клеточный геном, позволяет рассматри-

вать вирусы как естественные векторы чужеродной ДНК для кле-

ток млекопитающих. Действительно, только с помощью вирусных

векторов пока удается достичь такого уровня трансфекции кле-

ток человека in vitro и in vivo, который необходим для про-

явления лечебного эффекта. Это доказывают многочисленные

эксперименты на животных и первые клинические испытания ут-

вержденных программ генотерапии (см. 9.2). Вместе с тем,

нельзя недооценивать и вполне реальную опасность патологи-

ческих процессов, связанных с использованием вирусных час-

тиц. В качестве векторов применяют следующие рекомбинантные