клинические испытания генокоррекции этого заболевания нач-
нутся уже в ближайшем будущем.
10.4.4 Гемофилия B.
Гемоофилия B - сцепленное с полом заболевание, вызван-
ное наследственным дефектом фактора IX - важного компонента
средней фазы внутреннего каскада свертывания крови. Белок
(фактор IX) - гликопротеин, состоит из 415 аминокислотных
остатков, объединенных в 8 доменов, синтезируется в виде мо-
лекулы-предшественника клетками печени. В плазме крови фак-
тор IX находится в виде гетеродимера, состоящего из 2-х по-
липептидных цепей - легкой (L) и тяжелой (H), ковалентно
связанных между собой одним дисульфидным мостиком. Фактор IX
циркулирует в виде неактивного зимогена до тех пор, пока не
произойдет протеолитическое высвобождение его активирующего
пептида, что позволяет ему принять конформацию активной се-
риновой протеазы. Его роль в свертывании крови связана с ак-
тивацией фактора X посредством взаимодействий с ионами каль-
ция, фосфолипидами мембраны и фактором VIII.
Ген фактора IX транскрибируется в гепатоцитах с образо-
ванием мРНК размером 1 383 п.о. Для гена F9 характерна высо-
кая частота возникновения мутаций - 4.1*10!6 за поколение.
Также как и при гемофилии A мутации значительно чаще возни-
кают в сперматогенезе, чем в оогенезе (Montandon et
al.,1992). Считается, что вероятность получения мутации от
отца в 11 раз выше, чем от матери. Это означает, что в изо-
лированном случае вероятность гетерозиготного носительства
мутации у матери составвляет более 80%. Обнаружена четкая
корреляция между возрастом отца и вероятностью получения от
него новой мутации в гене F9. Так, средний возраст отца в
момент рождения дочери - носительницы новой мутации, состав-
ляет около 42 лет (King et al.,1992).
К 1994 г идентифицировано около 400 мутаций в гене ге-
мофилии B. Подавляющее большинство из них замены нуклеоти-
дов, приводящие к заменам аминокислот или к образованию
стоп-кодонов. Характерно, практически, полное отсутствие вы-
раженных мажорных мутаций и доминирующих областей повышенной
частоты мутирования. Только одна мутация - I397T, встрети-
лась в 7 самьях. Около 42% точечных мутаций возникает в CpG
динуклеотидах (Bottema et al., 1993). Показано, что частота
G-A или C-T транзиций в CpG cайтах в 24 раза выше, чем в
других местах гена (Koeberl et al., 1990). Кроме того, в CpG
динуклеотидах гена F9 в 7.7 раз чаще возникают трансверсии
(A-T, A-C, G-T или G-C). Это обьясняется тем, что содержание
(G+C) в кодирующих областях F9-гена составляет 40% (Bottema
et al., 1991).
В 40% случаев при тяжелых, ингибиторных формах гемофи-
лии В у пациентов обнаруживаются делеции различной протяжен-
ности. Около 10% точковых мутаций локализовано в донорных или
акцепторных сайтах сплайсинга или создают новые сайты
сплайсинга внутри интронов. В одной семье разрушение гена
произошло в результате инсерции Alu-элемента в экзон 5
(Vidaud et al., 1993). Описано 13 точковых мутаций в промо-
торной области гена F9. Именно с такими мутациями связана
Лейденовская (Leyden) форма заболевания, при которой к воз-
расту половозрелости наступает улучшение многих клинических
показателей и, в частности, исчезает кровоточащий диатез.
Обьясняется это тем, что мутации в промоторной области могут
приводить к переключению конститутивной экспрессии гена на
стероид-гармон-зависимую, нарушая связывание гепатоцитарного
ядерного фактора 4 (HNF-4), принадлежащего к суперсемейству
транскрипционных факторов для рецепторов стероидных гормонов.
Гемофилия B была использована как модель для выработки
стратегии генетического консультирования при моногенных за-
болеваниях, обладающих выраженной мутационной гетероген-
ностью (Giannelli et al., 1992). Основой такой стратегии яв-
ляется составление национальных баз данных молекулярных де-
фектов и специфических методов их диагностики. В частности,
основываясь на подобной информации, авторы провели характе-
ристику мутаций в группе из 170 неродственных индивидуумов с
гемофилией B шведского и английского происхождения и только
в одном случае им не удалось идентифицировать мутацию.
Молекулярная диагностика гемофилии В проводится как
непрямыми так и прямыми методами. Непрямая диагностика осно-
вана на анализе методом ПЦР внутригенных полиморфных сайтов:
Taq1 (в положении 11 109-11 113); инсерционного полиморфизма
в интроне А (рестриктазы Hinf1 и Dde1) ; Taq1 в интроне F в
положении 72. Метод ПДРФ анализа информативен только у
60-70% всех семей с гемофилией В (Aseev et al., 1994; Сурин
и др., 1994). Прямая диагностика гемофилии В включает ампли-
фикацию геномных фрагментов гена фактора IX с последующей
детекцией ошибок комплементации методом mismatch detection
(см.Главу IV) и прямое секвенирование продуктов амплификации
(Montadont et al.1990).
Сравнительно небольшие размеры гена, присутствие белко-
вого генопродукта в сыворотке крови и наличие естественных
биологических моделей способствовали быстрому прогрессу
исследований по генотерапия гемофилии В, которая в настоящее
время уже включена в программы клинических испытаний. Успеш-
ная трансдукция и коррекция генетического дефекта получена в
опытах in vitro и in vivo на самых различных модельных
системах (Culver, 1994; Gerrard et al., 1993). Так, при вве-
дении полноразмерной кДНК в составе ретровирусного вектора в
первичные культуры кератиноцитов человека наблюдали
экспрессию F9 и секрецию биологически активного фактора IX.
После трансплантации этих трансдуцированных клеток nu/nu мы-
шам человеческий фактор IX в небольшом количестве появлялся
в кроветоке и сохранялся там в течение недели (Gerrard et
al.,1993). На собаках, страдающих гемофилией B, осуществлена
трансдукция гепатоцитов in vivo путем прямой инфузии реком-
бинантного ретровирусного вектора в портальную вену. При
этом наблюдали устойчивую экспрессию фактора IX в течение
более 5 месяцев и улучшение биохимических показателей свер-
тываемости крови (Kay et al.,1993). Имеется сообщение об
успешной коррекции гемофилии В в Китае в 1992г. Двум больным
мальчикам в кожу спины трансплантировали культуру аутологич-
ных фибробластов, предварительно трансдуцированных ex vivo
рекомбинантной кДНК гена FVIII. Несмотря на определенный
скептицизм в оценке этого достижения со стороны специа-
листов, нет сомнения в том, что успешная генотерапия гемофи-
лии В - событие самого ближайшего будущего.
10.4.5 Болезнь Виллебранда.
Болезнь Виллебранда- аутосомно-доминантное (при некото-
рых формах рецессивное) заболевание, обусловленное
наследственным дефицитом белка VIIIR, родственного фактору
VIIIС свертывания крови (см.Гемофилия А) и известного, как
фактор фон Виллебранда. Этот большой гликопротеин синтезиру-
ется клетками эндотелия, в которых специфическая YIIIR-мРНК
составляет 0.3%, и поступает в кровь в виде двух мультимеров
с молекулярными весами от 850 кД до 20 миллионов дальтон.
Фактор VIIIR осуществляет взаимодействие между стенкой сосу-
дов и тромбоцитами, регулируя их адгезию в местах поврежде-
ния эндотелия. Фактор VIIIR участвует также в регуляции син-
теза и секреции фактора YIIIC и стабилизирует комплекс фак-
тора VIII.
Различают 7 типов болезни Виллебранда - I, IIA-IIE и
III (Zimmerman, Ruggeri, 1987). При типе I снижена концент-
рация всех мультимеров в плазме, но их качество не нарушено.
Генетически эта форма заболевания подразделяется на ре-
цессивные и доминантные варианты. Типы IIC и III - рецессив-
ны. Тип II характеризуется качественными аномалиями фактора
VIIIR, выражающимися в уменьшении способности формировать
большие мультимеры, (типы IIA и IIC) или в увеличении ско-
рости их выведения из плазмы (тип IIB).
Ген F8VWF достаточно протяженный и состоит из 52 экзонов,
размерами от 40 до 1379 п.о. (Mancuso et al., 1989). Величи-
на интронов варьирует в огромных пределах (от 100 до 20 000
пар нуклеотидов). Сигнальный пептид и пропептид кодируются
первыми 17 экзонами, в то время как зрелая субьединица
VIIIR- фактора и 3'нетранслируемая область - остальными 35
экзонами. Внутри гена идентифицированы повторяющиеся после-
довательности, включая 14 Alu-элементов и полиморфный TCTA
повтор размером около 670 п.о. в интроне 40. Районы гены,
кодирующие гомологичные домены, имеют сходную структуру. На
хромосоме 22q11-q13 обнаружен псевдоген длиной 21-29 кб,
соответствующий экзонам 23-34 F8VWF-гена (Mancuso et al.,
1991). Идентифицированные в нем сплайсинговые и нонсенс му-
тации препятствуют образованию функционального транскрипта.
Наибольшее число мутаций идентифицировано при типе II
болезни Виллебранда. Подавляющее большинство из них - замены
аминокислот, чаще всего происходящие в результате транзиций
в CpG динуклеотидах (Cooney et al., 1991; Randi et al.,
1991; Donner et al., 1992). Мутации при болезни типа IIA
кластерированы в A2 домене, где предположительно локализован
сайт протеолетического отщепления, в то время, как при типе
IIB - в домене, обеспечивающим взаимодействие с тромбоцитар-
ным гликопротеиновым комплексом (Ib-IX рецептором). Большая
группа мутаций при форме заболевания IIB локализована в сег-
менте из 11 аминокислот внутри единственного дисульфидного
изгиба (loop), соединяющего цистеины в 509 и 695 положениях.
При форме заболевания Нормандского типа, мимикриющей гемофи-
лию A, фактор Виллебранда структурно и функционально норма-
лен, за исключеним того, что нарушено его взаимодействие с
фактором YIII. У таких пациентов действительно идентифициру-
ются миссенс мутации, расположенные в области гена, кодирую-
щей сайты связывания фактора VIIIR с фактором VIIIС
(Mazurier, 1992).
Тип III представляет собой наиболее тяжелую форму забо-
левания, при которй фактор VIIIR, как правило, отсутствует.