Смекни!
smekni.com

Литература - Другое (книга по генетике) (стр. 17 из 64)

рибонуклеотиды. Ген HPRT экспрессируется во всех типах кле-

ток с образованием мРНК размером 654 п.о.. Культивируемые

линии клеток, дефектные по HPRT, устойчивы к 8-азагуанину и

6-тиогуанину, и таким образом, могут быть отобраны на соот-

ветствующих селективных средах. Гетерозиготные носители му-

таций по HPRT-гену могут быть легко выявлены по наличию 2-х

типов клеток - устойчивых и чувствительных к 8-азагуанину, в

первичной культуре фибробластов или в клетках волосяных лу-

ковиц. В большинстве мутантных клеточных линий количество

мРНК нормально, а белок отсутствует. У части пациентов хотя

и транскрибируется достаточно много мРНК, но в этих молеку-

лах обнаруживаются структурные и функциональные аномалии. В

небольшом проценте случаев у больных не удается выявить ни

белка, ни мРНК.

В 15% хромосом у больных с синдромом Леш Нихана ген

HPRT вовлечен в крупные структурные перестройки, корторые

могут быть выявлены методами Саузерн или Нозерн блот-гибри-

дизации. Синдром Леш Нихана одно из первых моногенных

наследственных заболеваний, для которых была проведена моле-

кулярная идентификация точечных мутантных аллелей. Именно на

этой моделе впервые был разработан и опробован метод анализа

мутаций, основанный на расщеплении РНК-ДНК гибридов рибонук-

леазой А в местах негомологичноно спаривания (метод расщеп-

ления рибонуклеазой А - см.Главу VI, Gibbs, Caskey, 1987).

Комбинация методов блот-гибридизации и расщепления рибонук-

леазой А позволяет выявить до 50% мутаций. В настоящее время

в гене HPRT найдено более 100 спорадических мутаций, полови-

на которых - однонуклеотидные замены типа миссенс, нонсенс и

в сайтах сплайсинга. Около 40% мутантных хромосом имеют

структурные аномалии, в том числе крупные делеции, нехватки

отдельных зкзонов и микроделеции одного или нескольких нук-

леотидов. В HPRT-гене, практически, отсутствуют мутации, до-

мининирующие по частоте в каких-либо популяциях. Исключение

составляет нонсенс мутация R170TER, которая составляет около

15% всех нуклеотидных замен (Gibbs et al., 1989). Также как

и при гемофилиях мутации гена HPRT чаще возникают в сперма-

тогенезе, чем в оогенезе. Вероятность мутирования возрастает

с возрастом отца. Идентифицировано 3 HPRT-псевдогена в хро-

мосомах 3, 5 и 11 (Stout, Caskey, 1984).

Описаны редкие случаи синдрома Леш Нихана у гетерози-

готных девочек. При этом, как правило, болезнь развивается

вследствие неслучайной инактивации X-хромосомы, не содержа-

щей мутации (Ogasawara et al., 1989). Однако, у 3-х женщин -

облигатных носительниц мутаций в HPRT-гене, селективный тест

не выявил присутствия мутантных клеток в культивируемых фиб-

робластах и волосяных луковицах. В связи с этим высказано

предположение, что определенные мутации гена HPRT находятся

в неравновесном сцеплении с неидентифицированной летальной

мутацией в X-хромосоме, что и приводит к селекции клона кле-

ток только с одной (мутантной или немутантной по гену HPRT)

X-хромосомой (Marcus et al., 1992).

Молекулярная диагностика болезни Леш-Нихана возможна

прямыми и непрямыми методами. Прямой вариант основан на про-

ведении обратной транскрипции мРНК, ее амплификации,

SSCP-анализе одноцепочечных ДНК фрагментов с их последующим

секвенированием (см.Глава VI). Косвенная диагностика пре-

дусматривает маркирование мутантной хромосомы при помощи по-

лиморфных сайтов (в частности, локуса DXS52 - зонд

St14/TaqI).

Как мы уже отмечали (Главы VII,VIII), первая трансген-

ная животная модель наследственного заболевания человека,

сконструированная путем направленного переноса мутациий в

культивируемые эмбриональные стволовые клетки, была получена

для синдрома Леш-Нихана (Hooper et al., 1987; Kuehn et al.,

1987). На этой моделе впервые была проведена генокоррекция

наследственного дефекта in vivo. Эти успехи в значительной

степени связаны с существованием селективных сред, позволяю-

щих вести автоматический отбор мутантных клеток. Вообще,

синдром Леш-Нихана представляет собой идеальную систему не

только для изучения пуринового метаболизма, но и для решения

многих теоретических вопросов биологии и медицины

(Seegmiller, 1989; Maraus et al., 1993; Boyel et al., 1993).

Сложность генокоррекции заболевания, однако, заключается в

необходимости обеспечения эффективной доставки гена HPRT

(или его кДНК) непосредственно в мутантные нервные клет-

ки. Эта проблема еще не решена. Поэтому реальные клинические

программы генотерапии этого заболевания на сегоднешний день

отсутствуют (см.Главу IX).

10.4.8 Болезнь Вильсона-Коновалова.

Болезнь Вильсона-Коновалова (БВК) - гепатолентикулярная

дегенерация - аутосомно-рецессивное заболевание, обусловлен-

ное наследственным дефектом одной из медь-транспортирующих

АТФаз. У больных резко снижена концентрация основного

медь-содержащего белка плазмы крови - церулоплазмина и в

меньшей степени - цитохромоксидазы, еще одного белка, участ-

вующего в метаболизме меди. Выделяют, по крайней мере, 3

формы БВК (Cox et al. , 1972). При редкой атипичной форме,

предположительно Германского происхождения, у гетерозигот

содержание церулоплазмина снижено, по крайней мере, в два

раза. При двух других, типичных формах - славянской и юве-

нильной, содержание церулоплазмина у гетерозигот находится в

пределах нормы. Славянский тип БВК характеризуется сравни-

тельно поздним началом и преимущественно неврологической

симптоматикой. Ювенильная форма чаще встречается в Западной

Европе и ведущими в этиологии заболевания являются печеноч-

ные нарушения. Среди евреев-ашкенази встречается БВК с позд-

ним началом и почти нормальным содержанием церулоплазмина в

сыворотке крови больных.

Ген БВК, идентифицированный в 1993г. независимо сразу в

2х лабораториях США, представляет собой медь-транспортирую-

щую АТФазу P типа с 6-ю металл-связывающими районами. Ген

имеет 60% гомологию по нуклеотидному составу с ранее иденти-

фицированным геном АТФ-азы (АТР7А), мутантном при болезни

Менкеса (Bull et al., 1993; Petruchin et al., 1993; Tanzi et

al., 1993). По аналогии с геном болезни Менкеса, также

обусловленной нарушением транспорта меди, ген БВК назван

АТР7В. Два пациента с БВК оказались гомозиготными по 7-нукле-

отидной делеции в кодирующей области гена ATP7B , что дока-

зывало его идентичность гену БВК (Petruchin et al, 1993).

Ген экспрессируется в клетках печени, мозга, почках, лимфо-

узлах. Типичным для экспрессии АТР7В оказался альтернативный

сплайсинг двух и более экзонов центральной части гена

(6, 7, 8, 12 и 13).

Кодируемый ATP7B-геном белок содержит несколько мемб-

ранных доменов, АТФ-консенсусную последовательность, сайт

фосфорилирования и, по крайней мере, 2 медь-связывающих сай-

та. В мозге, печени, почках и ломфоузлах обнаружены изоформы

белка, соответствующие продуктам альтернативного сплайсинга

гена АТР7В. Их назначение и функции пока неизвесты. В гене

АТР7В идентифицированы полиморфные микросателлитные маркеры,

а также около 10 полиморфных сайтов рестрикции. В настоящее

время в гене АТР7В идентифицированы более 30 мутаций, в том

числе 14 мелких делеций/инсерций, 2 - нонсенс мутации, 15 -

миссенс мутаций, 3 - сплайсинговые мутации. Диагностическую

ценность для европейцев представляют мутации His1070Gln и

Gly1267Lys, зарегистрованные в 28% и 10% всех мутантных хро-

мосом, соответственно (Thomas et al., 1995).

В заключении данного раздела представляется целесооб-

разным кратко рассмотреть другие достаточно частые моноген-

ные заболевания, для которых показана и проводится молеку-

лярная диагностика, в том числе и пренатальная, в других ме-

дико-генетических центрах России и, прежде всего, в Лабора-

тории молекулярной диагностики Институтата клинической гене-

тики РАМН (Москва).

10.4.9 Адрено-генитальный синдром.

Адрено-генитальный синдром - (врожденный дефицит

21-гидроксилазы) - достаточно распространенное аутосомно-ре-

цессивное заболевание. Частота "классических" форм 1:10 000

новоржденных, "неклассической" - около 1% в популяции. В за-

висимости от характера нарушения функции гена и, соот-

ветственно клинических проявлений "классическая форма" под-

разделляется на два варианта: 1. летальная сольтеряющая фор-

ма; 2. нелетальная - вирилизирующая форма, связанная c из-

бытком андрогенов (Morel, Miller, 1991).

В локусе 6р21.3, внутри сложного супергенетического

комплекса HLA идентифицированы два тандемно расположенных

21-гидроксилазных гена - функционально активный CYP21B и

псвдоген - CYP21А, неактивный вследствие делеции в 3-м экзо-

не, инсерции со сдвигом рамки считывания в 7-м экзоне и

нонсенс мутаций - в 8-м экзоне. Ген и псевдоген разделены

смысловой последовательностью гена С4В, кодирующей 4-й фак-

тор комплемента. Оба гена состоят из 10 экзонов, имеют длину

3,4 кб и отличаются только по 87 нуклеотидам. Высокая сте-

пень гомологии и тандемное расположение указвают на общность

эволюционного происхождения этих генов. Любопытно отметить,

что такие же тандемно расположенные гены 21-гидроксилазы

(называемые также Р450с21) обнаружены и у других млекопитаю-

щих, причем у мышей, в отличие от человека, активен только

ген CYP21A, но не CYP21B, тогда как у крупного рогатого ско-

та функционально активны оба гена.

Белок- 21-гидроксилаза ( Р450с21- микросомальный цитох-

ром 450) обеспечивает превращение 17-гидроксипрогестерона в

11-дезоксикортизол и прогестерона - в дезоксикортикостерон.

В первом случае возникает дефицит глюкокортикоидов и, прежде

всего, кортизола, что в свою очередь стимулирует синтез

АКТГ, и ведет к гиперплазии коры надпочечников (вирилирующая