Смекни!
smekni.com

Литература - Другое (книга по генетике) (стр. 39 из 64)

GC-последовательностями (так называемых H3 изохор), нахо-

дится 28% генов (Mouchiroud et al., 1991; Saссone et al.,

1993). Таким образом, существуют относительно небольшие

участки ДНК, в которых плотность генов в 10 -20 раз выше,

чем в остальных последовательностях.

Другой общей чертой генома человека является то, что in

vivo значительная доля цитозиновых остатков в молекуле ДНК

метилирована, то-есть находится в форме 5-метилдезоксицити-

дина. Экспериментальное изучение характера метилирования

основано на сопоставлении рестрикционных фрагметов, образую-

щихся после обработки ДНК эндонуклеазами, для которых сайты

узнавания одинаковы и содержат в своем составе цитозин, но

действуют эти ферменты по-разному, в зависимости от того,

находится ли это основание в метилированном состоянии или

нет. В частности, рестриктазы - Msp1 и Hpa11, узнают после-

довательность CCGG, но в отличие от Msp1, Hpa11 не расщепля-

ет ДНК в тех сайтах, где внутренний CpG динуклеотид метили-

рован. Некоторые сегменты генома, особенно это относится к

повторяющимся последовательностям, полностью метилированы в

местах 5'-CCGG-3' и частично метилированы в 5'-GCGC-3' -

сайтах рестрикции для Hha1. В других сегментах наблюдается

характерный рисунок частичного метилирования в 5'-CCGG-3'

последовательностях (Behn-Krappa et al., 1991). Различные

индивидуумы, независимо от их этнического происхождения,

практически не различаются по характеру метилирования ДНК в

одних и тех же типах тканей, тогда как в процессе онтогене-

тической дифференцировки происходят значительные изменения

рисунков метилирования. В перевиваемых культурах клеток опу-

холевого происхождения число метилированных сайтов резко

уменьшено.

Высказано предположение о наличии прямой связи между

метилированием ДНК и состоянием генетической активности в

клетках. Существует класс белков, которые специфическим об-

разом связываются с метилированными участками ДНК, делая их

недоступными для действия ряда ферментов, в том числе, воз-

можно, и для полимераз. Получено много прямых эксперимен-

тальных доказательств роли метилирования ДНК в инактивации

эукариотических промоторов, а, значит, и в регуляции актив-

ности генов. Напротив, гипометилирование промоторной области

генов, в особенности CpG островков, как правило, свиде-

тельствует о функциональной активности генов. Показано, что

необычные структуры в молекуле ДНК, также как экзогенная

ДНК, инкорпорированная в процессе генетической трансформа-

ции, нередко подвергаются метилированию. Известно, что мети-

лирование играет важную роль в инактивации X хромосомы у са-

мок, в регуляции экспрессии генов в процессе развития, а

также непосредственно вовлечено в феномен хромосомного (ге-

номного) импринтинга, связанного с различиями пенетрантности

некоторых аллелей в зависимости от их происхождения, то есть

прохождения через материнский или отцовский гаметогенез (Ба-

ранов, 1991).

В GC-богатых изохорах локализовано большое количество

CpG островков - последовательностей от 500 до 2000 п.о., ха-

рактеризующихся очень высоким содержанием гуанина и цитозина

(G+C > 60%), представленных в виде кластеров неметилирован-

ных CpG дуплетов и, так называемых, G/C боксов - локусов,

родственных сайту узнавания для одного из транскрипционных

факторов Sp1 - (G)4C(G)4C (Lindsay, Bird, 1987; Bird, 1986;

Aissani, Bernardi, 1991). CpG острова содержат много сайтов

узнавания для чувствительной к метилированию эндонуклеазы

HpaII, а также сайты для редкощепящих рестриктаз, узнающих

неметилированные CpG дуплеты. В частности, более 80%

Nor1-сайтов связано с CpG-богатыми островками. Как правило,

CpG островки локализованы в 5'- фланкирующих последователь-

ностях, 5'-зкзонах и 5'-интронах всех изученных хаузки-

пинг-генов и 40% тканеспецифических генов. CpG островки яв-

ляются характерной особенностью транскрибируемых участков

генома. Их идентификация в клонированных последовательностях

геномных библиотек существенно облегчает поиск конкретных

структурных генов (см.раздел 2.4) . Наибольшая плотность CpG

островков наблюдается в теломерных участках хромосом 1, 9,

15, 16, 17, 19, 20, 22 (Antonarakis,1994). Точные молекуляр-

ные методы регистрации СрG островков показали, что их число

в геноме человека приближается к 45000 (

Antequera,Bird,1993).

Можно также отметить существование в геноме человека

сайтов, гиперчувствительных к действию ДНК-азы 1 и структур-

но отличающихся от основной массы хроматина. Присутствие та-

ких сайтов показано для многих генов млекопитающих и, по-ви-

димому, это необходимое, но не достаточное условие их

экспрессии. Локализация гиперчувствительных сайтов может ме-

няться в процессе развития и под действием гормонов. В неко-

торых случаях эти участки маркируют положение транскрипцион-

ных регуляторных элементов генома, действующих как в положи-

тельном, так и в отрицательном направлениях. В других случа-

ях это области функционально активных генов, находящихся в

деспирализованном состоянии и имеющих однонитевую структуру.

Именно такие однонитевые участки ДНК особенно выско чувстви-

тельны к ДНК-азе 1. На этом их свойстве основан метод

ник-трансляции in situ, позволяющий непосредственно на хро-

мосомных препаратах визуализировать функционально активные

районы хромосом. С этой целью хромосомные препараты обраба-

тывают ДНК-азой 1, после чего непосредственно на них с по-

мощью ДНК-полимеразы проводят синтез ДНК в присутствии мече-

ных нуклеотидов. При этом метка включается преимущественно

только в те участки хромосом,где находятся функционально ак-

тивные гены (Verma, Babu, 1989).

ГЛАВА YIII.

БИОЛОГИЧЕСКИЕ МОДЕЛИ НАСЛЕДСТВЕННЫХ БОЛЕЗНЕЙ ЧЕЛОВЕКА.

Раздел 8.1. Генетические линии животных.

Большая роль в исследовании проблем генетики челове-

ка и медицинской генетики принадлежит мутантным генетическим

линиям животных и, в особенности, генетическим линиям мышей

(Конюхов, 1969, 1980; Корочкин, 1978). Высокий процент

сходства по нуклеотидными последовательностям между кодирую-

щими, регуляторными и даже интронными областями гомологичных

генов млекопитающих и человека, а также наличие большого

числа консервативных групп сцепления с идентичным расположе-

нием генов наряду с возможностями использования очень мощных

экспериментальных подходов для идентификации и клонирования

генов линейных животных позволяют проводить параллельные

исследования, значительно ускоряющие эффективность поиска и

молекулярного анализа индивидуальных генов человека.

Для многих моногенных заболеваний человека животные,

несущие мутации в гомологичных генах, являются лучшими, а

зачастую и единственными моделями для исследования молеку-

лярных основ патогенеза и отработки оптимальных схем лече-

ния, в том числе и с применением методов генной терапии

(см.Главу IX). Поиск таких биологических моделей, прежде

всего, ведется, среди уже существующих генетических линий

животных с установленным типом наследования определенных

аномальных признаков. Наиболее трудным при этом является до-

казательство идентичности мутантных генов и, соответственно

первичных биохимических дефектов, у человека и у линейных

животных.

В различных питомниках мира, в том числе и в России,

созданы и поддерживаются кллекции, насчитывающие от десятков

до несколько сотен генетических линий различных эксперимен-

тальных животных - мышей, крыс, кроликов, собак и др. (Коню-

хов, 1969; 1980; Staat, 1969; Hogan et al, 1989; Бландова и

др., 1990). Среди них генетические линии мышей наиболее мно-

гочислены в первую очередь из-за высокой плодовитости,

удобства содержания, относительной легкости эксперименталь-

ного манипулирования и целого ряда других причин. Некоторые

из этих линий представляют собой случайные находки, другие,

а их большинство, получены в результате действия различных

мутагенных факторов. Так, значительное число биологических

моделей было получено путем биохимической селекции потомства

мышей самцов, обработанных сильными мутагенами - этилнитроз-

мочевиной, триэтиленмеламином или облученных Рентгеном. Так

были смоделированы на мышах альфа-талассемия, полицитемия,

почечный ацидоз (Erickson, 1988). Однако, такой способ полу-

чения животных-моделей, хотя и более эффективен, чем поиск

спонтанно мутировавших особей, также основан на чистой слу-

чайности и не позволяет направленно менять структуру нужного

гена.

Процесс создания подобных генетических линий обычно

включает отбор особей с фенотипическими отклонениями; анализ

наследования этих фенотипческих признаков; длительное близ-

кородственное разведение отселектированных особей. При моно-

генном наследовании такие линии могут либо целиком состоять

из мутантных гомозигот, либо поддерживаться через гетерози-

готных особей в случае сниженной жизнеспособности и наруше-

ния плодовитости у гомозигот.

На первом этапе поиска адекватной модели какого-либо

моногенного наследственного заболевания руководствуются

сходством клинических проявлений течения болезни и фенотипом

мутантных животных. Однако, одного этого сходства недоста-

точно (Конюхов, 1969). Необходимо доказать гомологичность

генотипической природы наблюдаемых нарушений, то есть дока-

зать, что у человека и у животных (мышей) фенотипические из-

менения обусловлены мутациями в гомологичных генах. Огромная

мировая генетическая коллекция мышей насчитывет несколько

сотен линий, в каждой из которых различные дефекты наследу-