Смекни!
smekni.com

Литература - Другое (книга по генетике) (стр. 51 из 64)

ческой и этнической изолированности, величина инбридинга,

характер миграции населения.

Для всех мутаций, возникающих за счет повышенного уров-

ня спонтанного мутагенеза, характерны следующие особенности

- неслучайный характер внутригенной локализации мутаций,

сходство типов нарушений при отсутствии полной молекулярной

идентичности между ними. В отличие от спонтанных мутаций,

вызыванных эндогенными причинами, для мутаций, индуцирован-

ных действием неблагоприятных факторов внешней среды, про-

мышленными и сельскохозяйственными вредностями, ионизирующим

облучением, химическими агентами и прочим, специфики в типах

мутаций и в характере их локализации не наблюдается. В попу-

ляциях, находящихся в области действия таких неблагоприятных

факторов, будет повышена частота мутаций в различных генах,

однако спектр индуцированных мутаций будет достаточно разно-

образным.

Рассмотрим теперь влияние отбора на процесс поддержа-

ния и распространения мутаций в популяциях. Многие гены мо-

ногенных наследственных заболеваний рецессивны, то есть му-

тации в них в гетерозиготном состоянии не оказывают вредного

влияния на жизнеспособность. Поэтому после возникновения му-

тация может распространяться в популяции до определенной

концентрации, практически не подвергаясь элиминирующему

действию естественного отбора. В дальнейшем частота этой му-

тации достигнет равновесного состояния и не будет повышаться

за счет выщепления гомозиготных особей, жизнеспособность и

репродуктивные качества которых резко снижены. При этом ско-

рость элиминации мутации из популяции резко замедляется при

снижении ее частоты и, практически, после возникновения му-

тация может сохраняться в популяции на протяжении многих

десятков и даже сотен поколений. Различные мутации могут

случайным образом получить большее распространение в изоли-

рованных популяциях или среди групп населения, отличающихся

повышенным уровнем инбридинга. В целом, при отсутствии дав-

ления отбора по отношению к гетерозиготным особям общая кон-

центрация мутантных аллелей в популяции определяется часто-

той их спонтанного возникновения, при этом пул мутаций будет

состоять из большого количества разнообразных аллелей, каж-

дый из которых будет представлен редкими или даже единичными

случаями в различных популяциях.

Однако, специфические мутации могут получить значи-

тельно более широкое распространение в тех случаях, когда

гетерозиготные особи имеют какие-либо селективные преиму-

щества. Таким эффектом может обладать сама мутация, но более

вероятна возможность неравновесности по сцеплению между этой

мутацией и селективными аллелями другого локуса. Гетерозиго-

ты могут получить преимущество при изменении условий окружа-

ющей среды, в каких -то экстремальных ситуациях или среди

определенных групп населения. Так например, мутации, повыша-

ющие устойчивость организма к действию инфекционных агентов,

могут получить широкое распространение в период массовых

эпидемий. Одновременно повысится частота всех аллелей других

локусов, находящихся в неравновесности по сцеплению с данной

мутацией. Мутантные аллели, обеспечивающие селективное преи-

мущество гетерозигот, становятся преобладающими во многих

популяциях, не полностью изолированных друг от друга. При

этом наибольшая частота таких аллелей будет наблюдатся в ра-

йонах, где влияние поддерживающего отбора было максимальным

(например, в эпицентре эпидемии). По мере удаления от этого

района концентрация таких мутантных аллелей будет умень-

шаться, причем их распределение в разных популяциях будет

коррелировать с характером миграции населения. Подобный ха-

рактер распределения определенного мутантного аллеля в

частично изолированных популяциях принято связывать с так

называемым эффектом основателя или родоначальника.

Исследование спектров распределения мутаций в различ-

ных популяциях позволяет делать предположения относительно

возможного происхождения таких повреждений и тех механизмов,

которые лежат в основе их распространения среди населения.

Рассмотрим наиболее вероятные интерпретации различных

вариантов распределения аллелей в популяциях. Мутации,

представленные у единичных больных или в группе родственных

индивидуумов и не имеющие специфической внутригенной локали-

зации, по-видимому, являются следствием естественного мута-

ционного процесса. Если в каких-то популяциях концентрация

мутаций в различных генах повышена, вероятно, они находятся

в зоне действия внешних неблагоприятных факторов, индуцирую-

щих возникновение нарушений в структуре ДНК. В тех случаях,

когда локализация и типы мутаций носят специфический харак-

тер можно предполагать наличие особых молекулярных механиз-

мов контроля повышенного уровня мутагенеза в определеннных

районах генома. Распространение специфических мутаций в изо-

лированных популяциях происходит за счет их ограниченного

размера и повышенного уровня инбридинга (эффект родоначаль-

ника). И, наконец, обнаружение градиентного распределения

мутаций, превалирующих в различных, частично изолированных

популяциях позволяет предполагать селективное преимущество

гетерозиготных носителей мутаций на определенных этапах эво-

люционного развития.

Таким образом, сопоставляя спектры распределения одно-

типных мутаций у жителей разных континентов, разных стран, у

людей, принадлежащих к различным расам и национальностям

можно определить степень генетической близости между всеми

этими группами и реконструировать их филогенетические отно-

шения (Cavalli-Sforza,Piazza,1993). Одним из практических

следствий этих исследований является возможность прогнозиро-

вать наиболее вероятные мутации в различных генах у пациен-

тов разного этнического происхождения, что приводит к суже-

нию спектра поиска специфических мутаций. Особый интерес в

этом смысле представляют наиболее распространенные мутации

(например delF508 при муковисцидозе; R408W - при фенилкето-

нурии и многие другие). Для профилактики наследственных за-

болеваний необходима разработка эффективных и простых мето-

дов молекулярной диагностики таких мутаций как у больных,

так и у гетерозиготных носителей с целью проведения скрини-

рующих программ среди населения и выявления максимально воз-

можного числа семей с повышенным риском рождения больного

ребенка.

ГЛАВА VII.

МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИЕ АСПЕКТЫ ПРЕНАТАЛЬНОЙ ДИАГ-

НОСТИКИ НАСЛЕДСТВЕННЫХ ЗАБОЛЕВАНИЙ.

Раздел 7.1 Прямые и косвенные методы молекулярной диаг-

ностики.

Локализация и клонирование кДНК-овых последовательнос-

тей генов открывают принципиально новые возможности диагнос-

тики наследственных заболеваний, основанные на исследовании

мутантных аллелей у пациентов, членов их семей или у предпо-

лагаемых гетерозиготных носителей патологических мутаций.

Это в равной мере относится и к пренатальной диагностике,

которая может быть проведена с использованием молекулярных

методов анализа на самых ранних стадиях развития плода

(см.7.5). Эти же подходы вполне приемлемы для диагностики до

появления каких-либо клинических или биохимических симптомов

болезни (досимптоматическая диагностика), что позволяет вы-

работать и начать рациональную тактику лечения (упреждающая

терапия), а также эффективно выявлять гетерозиготных носите-

лей в семьях высокого риска, что является важным фактором

профилактики наследственных болезней. Решающими преимущест-

вами молекулярной диагностики являются её универсальность,

возможность использовать для анализа любые ДН-содержащие

клетки или ткани, причем анализ может быть произведен на лю-

бых стадиях онтогенеза, начиная со стадии зиготы.

Принципиально различают прямую и непрямую ДНК-диагнос-

тику мононогенных наследственных болезней. В общем случае,

использование прямых методов диагностики возможно лишь для

клонированных генов с известной нуклеотидной последователь-

ностью полноразмерной кДНК, при этом необходимо предвари-

тельное генотипирование мутантных аллелей у родителей. В

случае прямой диагностики обьектом молекулярного анализа яв-

ляется сам ген, точнее мутации этого гена, идентификация ко-

торых и составляет основную задачу исследования. Такой под-

ход особенно эффективен при наличии точной информации о при-

роде, частоте и локализации наиболее распространенных (доми-

нирующих по частоте) мутаций соответствующих генов, а также

о наличии в них особенно легко мутирующих "горячих" точек. К

таковым относятся мутация delF508 и ряд других мутаций при

муковисцидозе, делеционные мутации при миодистрофии Дюшенна,

мутация R408W при фенилкетонурии, инверсионная мутация при

гемофилии А, протяженная делеция при адрено-генитальном

синдроме, экспансии триплетных повторов в случае "динамичес-

ких" мутаций при синдроме ломкой X-хромосомы и при ряде дру-

гих нейродегенеративных заболеваний (см. Главы IV и X). Ме-

тоды, используемые для направленного поиска этих мутаций,

подробно рассмотрены в Главе IV. В ряде случаев (муковисци-

доз, фенилкетонурия, серповидно-клеточная анемия) эти методы

удалось автоматизировать, что позволяет одноверменно тести-

ровать сразу несколько (до 30 и более) различных мутаций.

При этом появляется реальная возможность выявлять свыше

95-98% мутантных хромосом, что делает целесообразным и эко-