Смекни!
smekni.com

Литература - Другое (книга по генетике) (стр. 61 из 64)

вирусы: ретровирусы, аденовирусы, аденоассоциированные виру-

сы, вирус герпеса, вирус спида (HIV), вирус ветряной оспы и

некоторые другие (Anderson, 1992; Culver, 1994; Lowenstein,

1994; Hodgson, 1995; Kay, Woo, 1992). Учитывая большую прак-

тическую значимость этих векторов, рассмотрим их более под-

робно.

_Ретровирусные векторы. . Генные конструкции на основе

ретровирусов (РНК-содержащих вирусов) особенно часто исполь-

зуются для трансдукции ДНК ex vivo. Наиболее популярный рет-

ровирусный вектор - вирус мышиного лейкоза Molony (MoMLV).

По сравнению с другими типами векторов ретровирусы обладают

уникальной способностью эффективно переносить чужеродные ге-

ны и стабильно интегрировать их в геном делящихся соматичес-

ких клеток. Для безопасности ретровирусные последовательнос-

ти модифицируют таким образом, что в инфецированных ими

клетках вирусные белки не производятся. Это достигается за

счет удаления или инактивации всех кодирующих последователь-

ностей вируса. Репликация вирусных векторов может происхо-

дить только в специальных "пакующих" клетках, в геном кото-

рых встроены все гены, производящие вирусные белки. При вве-

дении ретровирусных векторов в эти клетки образуются вирио-

ны, несущие векторную РНК и способные лишь проникать в клет-

ки-мишени, но не размножаться в них. Недостатком этой систе-

мы, также как и других векторных систем на основе вирусов,

является возможность контаминации производящей клеточной ли-

нии нормальным ретровирусом и получения на этой основе ком-

петентного по репликации вектора. Для предотвращения этого

необходимо регулярное тестирование "пакующей" линии клеток.

Возможна также контаминация ретровирусного вектора клеточны-

ми РНК, некоторые из них могут обратно транскрибироваться и

встраиваться в геном трансдуцированных клеток. Последстия

такого события могут быть выявлены в экспериментах на живот-

ных моделях. Другими серьезными недостатками ретровирусных

векторов является: (1) их способность переносить генетичес-

кий материал только в пролифирирующие клетки; (2) способ-

ность индуцировать мутации при случайной интеграции в геном;

(3) возможность спонтанной активации онкогена; (4) небольшие

размеры переносимой ДНК-вставки - до 8 тысяч п.о.; (5) срав-

нительно низкий титр -10!6-10!7/мл рекомбинантных вирусных

частиц, получаемых для трансдукции; (6) необходимость конс-

труирования соответствующих "пакующих" клонов клеток.

_Аденовирусные векторы. . В отличие от ретровирусов адено-

вирусы активно инфецируют неделящиеся клетки, обладают боль-

шей потенциальной пакующей способностью (ДНК-вставка> 8 кб),

имеют высокий титр - 10!11/ мл, однако, не обеспечивают

встраивание чужеродной ДНК в геном трансформированной клетки

(Hodgson, 1955). Использование их перспективно для генокор-

рекции клеток верхних дыхательных путей, легких и других ор-

ганов - мозга, печени, мышц, кожи и пр. Они эффективны при

доставке аэрозольным способом, что было использовано в пер-

вых клинических испытаниях по генотерапии муковисцидоза

(Crystal et al., 1994). В аденовирусные векторы также инсер-

тируют маркерные гены - neo, CAT или бета-галактозидазный

ген (бета-Gal) для того, чтобы идентифицировать трансдуциро-

ванные клетки. Для конструирования векторов используют де-

фектные по репликации аденовирусы, которые получают путем

вырезания из вирусной ДНК генов, кодируюших белки (E1a,

E1b)- так называемые аденовирусные векторы 2-го поколения. В

настоящее время создаются аденовирусные векторы 3-го поколе-

ния, в которых помимо генов Е1а и Е1b удаляют и регуляторный

ген Е4. Такая конструкция может поддерживаться только в при-

сутствии клеток-хелперов (например, в культуре клеток почек

человека). Удаление большего числа аденовирусных генов из

векторов часто сопровождается их дестабилизацией. Это один

из главных недостатков аденовирусных векторов, так как в ря-

де случаев остающиеся гены, трансдуцированные в клетки-мише-

ни, способствуют формированию иммунного ответа. Именно выра-

женный иммунный ответ при повторных введениях аденовирусного

вектора с инсерцией гена CFTR, оказался наиболее серьезным

препятствием для успешной генотерапии муковисцидоза (Crystal

et al., 1994). Некоторые аденовирусные белки способны оказы-

вать цитотоксический эффект на высокоспециализированные

клетки человека. Схема поддержания аденовирусных векторов

сходна с той, которая используется для производства ретрови-

русных векторов. Велика опасность их контаминации хелперным

реплицирующимся вирусом. Кроме того, аденовирусы редко ин-

тегрируются в геномную ДНК и потому экспрессия переносимых

ими генов, как правило, носит временный характер

(Табл. 9.1). Способность инфецировать, практически, любые

клетки как in vivo, так и in vitro делает особенно актуаль-

ной адресную доставку таких конструкций и введение в их сос-

тав тканеспецифических промотров. Например, промотор гена

альфа-фетопротеина при необходимости экспрессии гена в клет-

ках печени, либо промоторы генов сурфактантных белков В и С

для экспрессии чужеродных генов в клетках легких.

_Аденоассоциированные вирусы . обладают значительно мень-

шей пакующей способностью (около 5 кб). Однако, в отличие от

ранее рассмотренных вирусов не обладают онкогенной актив-

ностью, не патогенны, способны интегрироваться в геном, где

пребывают в латентном состоянии. Уникальной особенностью AAV

является их способность к стабильной неслучайной интеграции

в один из районов хромосомы 19. Специфичность интеграции ви-

руса определяется наличием в его геноме гена rep. Близко

родственные AAV, так называемые, парвовирусы (H1, MVM, Lu-

III), обладают еще меньшей пакующей способностью - около 2

кб и не имеют специфичного встраивания, однако, они также

рассматриваются как потенциально перспективные векторы.

_Вирус простого герпеса (HSV). . Крупный (152 кб) ДНК-со-

держащий вирус, при трансформации не интегируется в геном,

формируя в ядрах эписомные структуры. Уникальная особенность

HSV является его выраженная тропность к клеткам нервной сис-

темы. Отсюда его перспективность как векторной системы для

лечения опухолей мозга, болезни Паркинсона и многих других.

Его известное преимущество - достаточно большая пакующая

способность (>30кб). Важным этапом в создании вектора на ос-

нове HSV является удаление из его генома области ICP22, от-

ветственной за синтез литических белков, и индукция мутации

1814, вызывающей блок транскрипции вирусной ДНК. В последнее

время на основе HSV стали получать искусственные производные

вируса, так назывемые ампликон-продукты, лишенные, практи-

чески, всех генов HSV, но способные к репликации .

Конструкции векторов, используемых для переноса экзо-

генных ДНК в клетки человека, постоянно совершенствуются в

зависимости от типа клеток-мишеней. Так, новый тип векторов,

сконструированных на основе псевдо-аденовирусов, сочетает в

себе все преимущества аденовирусных векторов, но при этом

собственные вирусные гены, практически, не оказывают никако-

го повреждающего эффекта на трансфецированные клетки-мише-

ни, так как содержат очень мало регуляторных элементов и

последовательностей, ответственных за упаковку и репликацию

аденовируса. Кроме того, псевдо-аденовирусные векторы с ус-

пехом переносят чужеродные последовательности ДНК как в де-

лящиеся, так и в покоящиеся клетки. Изучаются также перспек-

тивы использования для генной терапии других вирусных сис-

тем, таких как SV40, вирус иммунодефицита (HIV), вирус вет-

ряной оспы и многие другие. В частности, заслуживают внима-

ния эписомные (неинтегрирующиеся в геном реципиента) векто-

ры, полученные на основе очень крупного вируса Эпштейн-Бар-

ра, способного нести вставку размером от 60 до 330 кб (Sun

et al., 1994).

9.4.5 Перспективы создания "идеальных" векторных систем.

Обзор существующих данных позволяет придти к заключе-

нию, что, несмотря на усилия многих лабораторий мира, все

уже известные и испытанные in vivo и in vitro векторные сис-

темы далеки от совершенства (Hodgson, 1995). Если проблема

доставки чуужеродной ДНК in vitro практически решена, а ее

доставка в клетки-мишени разных тканей in vivo успешно реша-

ется (главным образом, путем создания комбинированных рецеп-

тор-опосредованных конструкций), то другие характеристики

существующих векторной системы - стабильность интеграции,

регулируемая экспрессия, безопасность - все еще нуждаются в

серьёзных доработках. Прежде всего, это касается стабильнос-

ти экспрессии. Последняя может быть достигнута либо при ин-

теграции чужеродной ДНК непосредственно в геном реципиента,

либо путем обеспечения длительной персистенции экзогенной

ДНК в ядре. До настоящего времени интеграция в геном дости-

галась только при использовании ретровирусных либо адено-ас-

социированных векторов (Табл. 9.1). Случайная интеграция

трансфектной ДНК в геном происходит достаточно редко, причем

в случае ретровирусных векторов это происходит только в де-

лящихся клетках. Повысить эффективность стабильной интегра-

ции можно путем совершенствования генных конструкций типа

рецептор-опосредованных систем (Рис. 9.2). Однако, эти век-

торные конструкции должны включать только часть вирусных ге-

нов, например, гены обратной транскриптазы, ретровирусной

интегразы, некоторые транспазоновые гены, парвовирусные

rep-гены (см. 9.4.4). Учитывая возможный мутагенный эффект

случайной интеграции, весьма перспективным представляется

создание достаточно стабильных эписомных векторов. В част-