Смекни!
smekni.com

Физо Покровский Том 2 (стр. 39 из 89)

ff= C1nРАН.

Фильтрационная фракция составляет около 0,2, т. е. равна поч­ти 20 % от объема плазмы, протекающей через почку.

12.2.5. Синтез веществ в почках

В почках образуются некоторые вещества, выделяемые в мочу (например, гиппуровая кислота, аммиак) или поступающие в кровь (ренин, простагландины, глюкоза, синтезируемая в почке, и др.). Гиппуровая кислота образуется в клетках канальцев из бензойной кислоты и гликокола. В опытах на изолированной почке было


показано, что при введении в артерию раствора бензойной кислоты и гликокола в моче появляется гиппуровая кислота. В клетках канальцев при дезаминировании аминокислот, главным образом глютамина, из аминогрупп образуется аммиак. Он поступает пре­имущественно в мочу, частично проникает и через базальную пла­зматическую мембрану в кровь, и в почечной вене аммиака боль­ше, чем в почечной артерии.

12.2.6. Осмотическое разведение и концентрирование мочи

Способностью к осмотическомуразведению мо­чи, т. е. способностью к выделению мочи с меньшей концентрацией осмотически активных веществ, а следовательно, с меньшим осмо­тическим давлением, чем плазма крови, обладают почки млеко­питающих, птиц, рептилий, амфибий, пресноводных рыб и кругло-ротых. В то же время способностью к образованию мочи с боль­шей концентрацией осмотически активных веществ, т. е. с большей осмотической концентрацией, чем кровь, обладают лишь почки теплокровных животных. Многие исследователи пытались разга­дать физиологический механизм этого процесса, но лишь в начале 50-х годов XXвека была обоснована гипотеза, согласно которой образование осмотически концентрированной мочи обусловлено деятельностью повороти о-п ротивоточноймножи­тельнойсистемы в почке.

Принцип противоточного обмена достаточно широко распрост­ранен в природе и используется в технике. Механизм работы та­кой системы рассмотрим на примере кровеносных сосудов в конеч­ностях арктических животных. Во избежание больших потерь теп­ла кровь в параллельно расположенных артериях и венах конечно­стей течет таким образом, что теплая артериальная кровь согре­вает охлажденную венозную кровь, движущуюся к сердцу (рис. 12.8, А). В стопу притекает артериальная кровь низкой тем­пературы, что резко уменьшает теплоотдачу. Здесь такая система функционирует только как противоточный обменник; в почке же она обладает множительным эффектом, т. е. увеличением эффекта,


достигаемого в каждом из отдельных сегментов системы. Для луч­шего понимания ее работы рассмотрим систему, состоящую из трех параллельно расположенных трубок (рис. 12.8, Б). Трубки Iи IIдугообразно соединены на одном из концов. Стенка, общая для обеих трубок, обладает способностью переносить ионы, но не пропускать воду. Когда в такую систему через вход Iналивают раствор концентрации 300 мосмоль/л (рис. 12.8, Б, а) и он не течет, то через некоторое время в результате транспорта ионов в трубке Iраствор станет гипотоническим, а в трубке II— гипер­тоническим. В том случае, когда жидкость течет по трубкам непре­рывно, начинается концентрирование осмотически активных ве­ществ (рис. 12.8, Б, б). Перепад их концентраций на каждом уров­не трубки вследствие одиночного эффекта транспорта ионов не превышает 200 мосмоль/л, однако по длине трубки происходит умножение одиночных эффектов, и система начинает работать как противоточная множительная. Так как по ходу движения жид­кости из нее извлекаются не только ионы, но и некоторое коли­чество воды, концентрация раствора все более повышается по мере приближения к изгибу петли. В отличие от трубок Iи IIв труб­ке IIIрегулируется проницаемость стенок для воды: когда стенка становится водопроницаемой — начинает пропускать воду, объем жидкости в ней уменьшается. При этом вода идет в сторону боль­шей осмотической концентрации в жидкость возле трубки, а соли остаются внутри трубки. В результате этого растет концентрация ионов в трубке IIIи уменьшается объем содержащейся в ней жид­кости. Концентрация в ней веществ будет зависеть от ряда усло­вий, в том числе от работы противоточной множительной системы трубок Iи II. Как будет ясно из последующего изложения, работа почечных канальцев в процессе осмотического концентрирования мочи похожа на описанную модель.

В зависимости от состояния водного баланса организма почки выделяют гипотоническую (осмотическое разведение) или, на­против, осмотически концентрированную (осмотическое концен­трирование) мочу. В процессе осмотического концентрирования мочи в почке принимают участие все отделы канальцев, сосуды мозгового вещества, интерстициальная ткань, которые функциони­руют как поворотно-противоточная множительная система. Из 100 мл фильтрата, образовавшегося в клубочках, около 60— 70 мл (2/з) реабсорбируется к концу проксимального сегмента. Концентрация осмотически активных веществ в оставшейся в ка­нальцах жидкости такая же, как и в ультрафильтрате плазмы кро­ви, хотя состав жидкости отличается от состава ультрафильтрата вследствие реабсорбции ряда веществ вместе с водой в прокси­мальном канальце (рис. 12.9). Далее канальцевая жидкость пере­ходит из коркового вещества почки в мозговое, перемещаясь по петле нефрона до вершины мозгового вещества (где каналец изги­бается на 180°), переходит в восходящий отдел петли и движется в направлении от мозгового к корковому веществу почки.

Функциональное значение различных отделов петли нефрона


неоднозначно. Поступающая из проксимального канальца, в тонкий нисходящий отдел петли нефрона жидкость попадает в зону почки, в интерстициальной ткани которой концентрация осмотически ак­тивных веществ выше, чем в корковом веществе почки. Это повы­шение осмоляльной концентрации в наружной зоне мозгового ве­щества обусловлено деятельностью толстого восходящего отдела петли нефрона. Его стенка непроницаема для воды, а клетки транспортируют С1~, Na+ в интерстициальную ткань. Стенка нисходящего отдела петли проницаема для воды. Вода всасывает­ся из просвета канальца в окружающую интерстициальную ткань по осмотическому градиенту, а осмотически активные вещества остаются в просвете канальца. Концентрация осмотически актив­ных веществ в жидкости, поступающей из восходящего отдела пе­тли в начальные отделы дистального извитого канальца, состав­ляет уже около 200 мосмоль/кг НгО, т. е. она ниже, чем в ультра­фильтрате. Поступление С1~ и Na+ в интерстициальную ткань моз­гового вещества увеличивает концентрацию осмотически актив­ных веществ (осмоляльную концентрацию) межклеточной жидко­сти в этой зоне почки. На такую же величину растет и осмоляль-ная концентрация жидкости, находящейся в просвете нисходящего


отдела петли. Это обусловлено тем, что через водопроницаемую стенку нисходящего отдела петли нефрона в интерстициальную ткань по осмотическому градиенту переходит вода, в то же вре­мя осмотически активные вещества остаются в просвете этого канальца.

Чем дальше от коркового вещества по длиннику почечного сосочка находится жидкость в нисходящем колене петли, тем вы­ше ее осмоляльная концентрация. Таким образом, в каждых со­седних участках нисходящего отдела петли имеется лишь неболь­шое нарастание осмотического давления, но вдоль мозгового ве­щества почки осмоляльная концентрация жидкости в просвете ка­нальца и в интерстициальной ткани постепенно растет от 300 до 1450 мосмоль/кг Н2О.

На вершине мозгового вещества почки осмоляльная концентра­ция жидкости в петле нефрона возрастает в несколько раз, а ее объем уменьшается. При дальнейшем движении жидкости по восходящему отделу петли нефрона, особенно в толстом восходя­щем отделе петли, продолжается реабсорбция С1~ и Na+, вода же остается в просвете канальца. В начальные отделы дисталь-ного извитого канальца всегда — и при водном диурезе, и при антидиурезе — поступает гипотоническая жидкость, концентрация осмотически активных веществ в которой менее 200 мосмоль/кг

н2о.

При уменьшении мочеотделения (анти диурезе), вызванном инъекцией АДГ или секрецией АДГ нейрогипофизом при дефици­те воды в организме, увеличивается проницаемость стенки конеч­ных частей дистального сегмента (связующий каналец) и соби­рательных трубок для воды. Из гипотонической жидкости, нахо­дящейся в связующем канальце и собирательной трубке коркового вещества почки, вода реабсорбируется по осмотическому градиен­ту, осмоляльная концентрация жидкости в этом отделе увеличива­ется до 300 мосмоль/кг Н2О, т. е. становится изоосмотичной крови в системном кровотоке и межклеточной жидкости коркового ве­щества почки. Концентрирование мочи продолжается в собира­тельных трубках; они проходят параллельно канальцам петли неф­рона через мозговое вещество почки. Как отмечалось выше, в моз­говом веществе почки постепенно возрастает осмоляльная кон­центрация жидкости и из мочи, находящейся в собирательных трубках, реабсорбируется вода; концентрация осмотически актив­ных веществ в жидкости просвета канальца выравнивается с та­ковой в интерстициальной жидкости на вершине мозгового веще­ства. В условиях дефицита воды в организме усиливается секре­ция АДГ, что увеличивает проницаемость стенок конечных частей дистального сегмента и собирательных трубок для воды.

В отличие от наружной зоны мозгового вещества почки, где повышение осмолярной концентрации основано главным образом на транспорте Na+ и С1~, во внутреннем мозговом веществе почки это повышение обусловлено участием ряда веществ, среди кото­рых важнейшее значение имеет мочевина — для нее стенки прок-


симального канальца проницаемы. В проксимальном канальце реабсорбируется до 50 % профильтровавшейся мочевины, однако в начале дистального канальца количество мочевины несколько больше, чем количество мочевины, поступившей с фильтратом. Оказалось, что имеется система внутрипочечного кругооборота мочевины, которая участвует в осмотическом концентрировании мочи. При антидиурезе АДГ увеличивает проницаемость собира­тельных трубок мозгового вещества почки не только для воды, но и для мочевины. В просвете собирательных трубок вследствие реабсорбции воды повышается концентрация мочевины. Когда проницаемость канальцевой стенки для мочевины увеличивается, она диффундирует в мозговое вещество почки. Мочевина прони­кает в просвет прямого сосуда и тонкого отдела петли нефрона. Поднимаясь по направлению к корковому веществу почки по пря­мому сосуду, мочевина непрерывно участвует в противоточном обмене, диффундирует в нисходящий отдел прямого сосуда и нис­ходящую часть петли нефрона. Постоянное поступление во внут­реннее мозговое вещество мочевины, С1~ и Na+, реабсорбируемых клетками тонкого восходящего отдела петли нефрона и собира­тельных трубок, удержание этих веществ благодаря деятельности противоточной системы прямых сосудов и петель нефрона обеспе­чивают повышение концентрации осмотически активных веществ во внеклеточной жидкости во внутреннем мозговом веществе поч­ки. Вслед за увеличением осмоляльной концентрации окружаю­щей собирательную трубку интерстициальной жидкости возрастает реабсорбция воды из нее и повышается эффективность осморегу-лирующей функции почки. Эти данные об изменении проницаемо­сти канальцевой стенки для мочевины позволяют понять, почему очищение от мочевины уменьшается при снижении мочеотделения.