Смекни!
smekni.com

Физо Покровский Том 2 (стр. 23 из 89)

slgAосуществляет защитную функцию, непосредственно дей­ствуя на бактерии, связывая их и препятствуя внедрению в глубь слизистой оболочки. slgAдезактивирует токсичные продукты дея­тельности бактерий, небактериальные продукты и способствует последующему их разрушению протеолитическими ферментами.

Органы местной иммунной защиты пищеварительного тракта обеспечивают защитный иммунный ответ на контакт с антигенами, перорально поступающими в организм человека из внешней сре­ды. Выраженность ответной реакции зависит не только от силы антигенной стимуляции, но и от функционального состояния мак­роорганизма, его нервной и эндокринной регуляторных систем, в том числе и от влияний регуляторных пептидов пищеварительного тракта. При всей своей автономности местная иммунная система пищеварительного тракта тем не менее состоит в сложной связи с общей иммунной системой и другими местными иммунными систе­мами человека.


Глава10. ОБМЕНВЕЩЕСТВИЭНЕРГИИ. ПИТАНИЕ

10.1. ОБМЕН ВЕЩЕСТВ

Из предыдущего изложения курса физиологии ясно значение обмена веществ (метаболизма) как характерного признака жизни. В результате обмена веществ непрерывно образуются, обновляют­ся и разрушаются клеточные структуры, синтезируются и разру­шаются различные химические соединения. В организме динами­чески уравновешены процессы анаболизма (ассимиляции) — био­синтеза органических веществ, компонентов клеток и тканей, и катаболизма (диссимиляции) — расщепление сложных молекул компонентов клеток. Преобладание анаболических процессов обес­печивает рост, накопление массы тела, преобладание же катаболи-ческих процессов ведет к частичному разрушению тканевых структур, уменьшению массы тела. При этом происходит превра­щение энергии, переход потенциальной энергии химических со­единений, освобождаемой при их расщеплении, в кинетическую, в основном тепловую и механическую, частично в электрическую энергию.

Для возмещения энергозатрат организма, сохранения массы тела и удовлетворения потребностей роста необходимо поступле­ние из внешней среды белков, липидов, углеводов, витаминов, мине­ральных солей и воды. Их количество, свойства и соотношение должны соответствовать состоянию организма и условиям его су­ществования. Это достигается путем питания. Необходимо также, чтобы организм очищался от конечных продуктов распада, кото­рые образуются при расщеплении различных веществ. Это дости­гается работой органов выделения.

В учебнике не приводится динамика химических превращений, происходящих в тканях, что является задачей биологической хи­мии. Физиологи обычно определяют затраты веществ и энергии организмом и устанавливают, как эти затраты должны быть вос­полнены с помощью полноценного питания.

В дальнейшем изложении мы раздельно рассмотрим обмен бел­ков, липидов, углеводов, минеральных солей и значение витаминов, хотя превращения всех этих веществ в организме происходят од­новременно. Выделение отдельных звеньев обмена представляет собой искусственное расчленение единого биологического процес­са. Это делается лишь для удобства изучения, а также для того, чтобы показать неодинаковое физиологическое значение перечис­ленных выше веществ.


10.1.1. Обмен белков<

Белкизанимают ведущее место среди органических элемен­тов, на их долю приходится более 50 % сухой массы клетки. Они выполняют ряд важнейших биологических функций.

Вся совокупность обмена веществ в организме (дыхание, пи­щеварение, выделение) обеспечивается деятельностью ферментов, которые являются белками. Все двигательные функции организма обеспечиваются взаимодействием сократительных белков — акти­на и миозина.

Поступающий с пищей из внешней среды белок служит пласти­ческой и энергетической целям. Пластическое значение белка со­стоит в восполнении и новообразовании различных структурных компонентов клетки. Энергетическое значение заключается в обе­спечении организма энергией, образующейся при расщеплении белков.

В тканях постоянно протекают процессы распада белка с по­следующим выделением из организма неиспользованных продук­тов белкового обмена и наряду с этим — синтез белков. Таким образом, белки организма находятся в динамическом состоянии: из-за непрерывного процесса их разрушения и образования про­исходит обновление белков, скорость которого неодинакова для различных тканей. С наибольшей скоростью обновляются белки печени, слизистой оболочки кишечника, а также других внутрен­них органов и плазмы крови. Медленнее обновляются белки, вхо­дящие в состав клеток мозга, сердца, половых желез и еще мед­леннее — белки мышц, кожи и особенно опорных тканей (сухо­жилий, костей и хрящей).

Физиологическое значение аминокислотного состава пищевых белков и их биологическая ценность. Для нормального обмена белков, являющихся основой их синтеза, необходимо поступление с пищей в организм различных аминокислот. Изменяя количест­венное соотношение между поступающими в организм амино­кислотами или исключая из рациона ту или иную аминокислоту, можно по состоянию азотистого баланса, росту, массе тела и об­щему состоянию животных судить о значении для организма отдельных аминокислот. Экспериментально установлено, что из 20 входящих в состав белков аминокислот 12 синтезируются в организме — заменимые аминокислоты, а 8 не синтезируются — незаменимые аминокислоты.

Без.незаменимых аминокислот синтез белка резко нарушается и наступает отрицательный баланс азота, останавливается рост, уменьшается масса тела. Для людей незаменимыми аминокисло­тами являются лейцин, изолейцин, валин, метионин, лизин, трео­нин, фенилаланин, триптофан.

Белки обладают различным аминокислотным составом, поэтому и возможность их использования для синтетических нужд ор­ганизма неодинакова. В связи с этим было введено понятие био­логической ценности белков пищи. Белки, содержащие весь необ-


ходимый набор аминокислот в таких соотношениях, которые обес­печивают нормальные процессы синтеза, являются белками биоло­гически полноценными. Наоборот, белки, не содержащие тех или иных аминокислот или содержащие их в очень малых количествах, являются неполноценными. Так, неполноценными белками явля­ются желатина, в которой имеются лишь следы цистина и отсут­ствуют триптофан и тирозин; зеин (белок, находящийся в кукуру­зе), содержащий мало триптофана и лизина; глиадин (белок пше­ницы) и гордеин (белок ячменя), содержащие мало лизина; и некоторые другие. Наиболее высока биологическая ценность бел­ков мяса, яиц, рыбы, икры, молока.

В связи с этим пища человека должна не просто содержать достаточное количество белка, но обязательно иметь в своем составе не менее 30% белков с высокой биологической ценностью, т. е. животного происхождения.

У людей встречается форма белковой недостаточности, раз­вивающаяся при однообразном питании продуктами раститель­ного происхождения с малым содержанием белка. При этом воз­никает заболевание, получившее название «квашиоркор». Оно встречается среди населения стран тропического и субтропиче­ского пояса Африки, Латинской Америки и Юго-Восточной Азии. Этим заболеванием страдают преимущественно дети в возрасте от 1 года до 5 лет.

Биологическая ценность одного и того же белка для разных людей различна. Вероятно, она не является какой-то определенной величиной, а может изменяться в зависимости от состояния ор­ганизма, предварительного пищевого режима, интенсивности и характера физиологической деятельности, возраста, индивидуаль­ных особенностей обмена веществ и других факторов.

Практически важно, чтобы два неполноценных белка, один из которых не содержит одних аминокислот, а другой — других, в сумме могли обеспечить потребности организма.

Азотистый баланс. Это соотношение количества азота, по­ступившего в организм с пищей и выделенного из него. Так как основным источником азота в организме является белок, то по азотистому балансу можно судить о соотношении количества по­ступившего и разрушенного в организме белка. Количество азота, поступившего с пищей, всегда больше количества усвоенного азота, так как часть его теряется с калом.

Усвоение азота вычисляют по разности содержания его в при­нятой пище и в кале. Зная количество усвоенного азота, легко вычислить общее количество усвоенного организмом белка, так как в белке содержится в среднем 16% азота, т. е. 1 г азота со­держится в 6,25 г белка. Следовательно, умножив найденное коли­чество азота на 6,25, можно определить количество усвоенного белка.

Для того чтобы установить количество разрушенного белка, необходимо знать общее количество азота, выведенного из орга­низма. Азотсодержащие продукты белкового обмена (мочевина,


мочевая кислота, креатинин и др.) выделяются преимущественно с мочой и частично с потом. В условиях обычного, неинтен­сивного потоотделения количество азота в поте можно не при­нимать во внимание, поэтому для определения количества рас­павшегося в организме белка обычно находят количество азота в моче и умножают на 6,25.

Между количеством азота, введенного с белками пищи, и ко­личеством азота, выводимым из организма, существует определен­ная связь. Увеличение поступления белка в организм приводит к увеличению выделения азота из организма. У взрослого чело­века при адекватном питании, как правило, количество введенного в организм азота равно количеству азота, выведенного из орга­низма. Это состояние получило название азотистого равновесия. Если в условиях азотистого равновесия повысить количество белка в пище, то азотистое равновесие вскоре восстановится, но уже на новом, более высоком уровне. Таким образом, азотистое равно­весие может устанавливаться при значительных колебаниях со­держания белка в пище.