Смекни!
smekni.com

Физо Покровский Том 2 (стр. 27 из 89)

маты, морковь, пшеница, рожь, печень, почки, говядина, яйца. Синтезируется микрофлорой кишечника

Bi2 (цианкобаламин) 3 мкг

Печень- рыб, печень и почки рогатого скота. Синтезируется микрофлорой кишечника

Н (биотин)

150—200 мкгГорох, соя, цветная капуста,

грибы, пшеница, яичный жел­ток, печень, почки, сердце


Участвует в реакциях клеточного дыхания и промежу­точного обмена, нормализует секреторную и моторную функции желудочно-кишечного тракта и функции печени.

При авитаминозе развивается пеллагра, характеризую­щаяся воспалением кожи (дерматит), расстройствами функ­ций желудочно-кишечного тракта (понос), поражением сли­зистых оболочек рта и языка, нарушениями психики

Необходим для синтеза жирных кислот, стероидных гор­монов, ацетилхолина и других важных соединений.

При авитаминозе возникают слабость, быстрая утомляе­мость, головокружения, дерматиты, поражения слизистых оболочек, невриты

Обладает широкой биологической активностью. Принимает участие в обмене белков и построении ферментов, регули­рующих обмен аминокислот: участвует в обмене жиров, являясь липотропным фактором; влияет на кроветворение.

При авитаминозе могут возникать эпилептиформные су­дороги, развивается гипохромная анемия

Влияет на синтез нуклеиновых кислот, аминокислот; на­ходится в хромосомах и служит важным фактором размно­жения клеток. Стимулирует и регулирует кроветворение.

При авитаминозе развиваются спру, анемия

Всасывается, соединившись с белком желудочного сока (внутренний фактор Касла). Цианкобаламин называют еще внешним фактором Касла. Влияет на гемопоэз. При авитаминозе развивается злокачественная анемия При употреблении большого количества сырого яичного белка биотин связывается и развивается авитаминоз, прояв­ляющийся дерматитом


Жирорастворимые витамины


А (ретинол)

1,5 мг (5000 ME)

D(кальциферолы) 2,5 мкг

(100 ME)

Е (токоферолы)10—12 мг

К (филлохиноны) 0,2—0,3 мг


Животные жиры, мясо, рыба, яйца, молоко

Печень рыб, икра, мясо жир­ных рыб, печень млекопитаю­щих и птиц, яйца

Растительные масла, зеленые листья овощей, яйца

Шпинат, капуста, томаты, пе­чень. Синтезируется микрофло­рой кишечника


Оказывает специфическое влияние на функции зрения и размножения. Общее системное действие проявляется в обеспечении нормального роста и развития. Участвует в образовании зрительных пигментов, обеспечивает адаптацию глаз к свету.

При авитаминозе возникают нарушение сумеречного зре­ния, пролиферация эпителия и его ороговение, повреждение роговицы глаз (ксерофтальмия и кератомаляция)

Регулирует обмен кальция и фосфора. При недостатке в детском возрасте развивается рахит (нарушается процесс костеобразования вследствие уменьшения содержания в костях солей кальция и фосфора)

Обладает противоокислительным действием на внутри­клеточные липиды, предохраняет липиды митохондрий от пероксидации; предохраняет эритроциты от гемолиза.

При авитаминозе развиваются дистрофия скелетных мышц, ослабление половой функции

Участвует в синтезе протромбина и других прокоагулян-тов; способствует нормальному свертыванию крови.

При авитаминозе возникают увеличение времени сверты­вания крови, желудочно-кишечные кровотечения, подкожные кровоизлияния


лируется в ее химических макроэргических связях. Так, при окис­лении углеводов 22,7% энергии химической связи глюкозы в про­цессе окисления используется на синтез АТФ, а 77,3% в форме первичной теплоты рассеивается в тканях. Аккумулированная в АТФ энергия используется в дальнейшем для механической рабо­ты, химических, транспортных, электрических процессов и в ко­нечном счете тоже превращается в теплоту, обозначаемую вторич­ной теплотой. Следовательно, количество тепла, образовавшегося в организме, становится мерой суммарной энергии химических связей, подвергшихся биологическому окислению. Поэтому вся энергия, образовавшаяся в организме, может быть выражена в единицах тепла — калориях или джоулях.

Для определения энергообразования в организме используют прямую калориметрию, непрямую калориметрию и исследование валового обмена.

10.2.1. Методы исследования энергообмена

10.2.1.1. Прямая калориметрия

Прямая калориметрия основана на непосредственном учете в биокалориметрах количества тепла, выделенного организмом. Био­калориметр представляет собой герметизированную и хорошо теп­лоизолированную от внешней среды камеру. В камере по трубкам циркулирует вода. Тепло, выделяемое находящимся в камере че­ловеком или животным, нагревает циркулирующую воду. По коли-


честву протекающей воды и изменению ее температуры рассчиты­вают количество выделенного организмом тепла.

Одновременно в биокалориметр подается О2 и поглощается избыток СО2 и водяных паров. Схема биокалориметра приведена на рис. 10.1. Продуцируемое организмом человека тепло измеряют с помощью термометров (1,2) по нагреванию воды, протекающей по трубкам в камере. Количество протекающей воды измеряют в баке (3). Через окно (4) подают пищу и удаляют экскременты. С помощью насоса (5) воздух извлекают из камеры и прогоняют через баки с серной кислотой (6 и 8) — для поглощения воды и с натронной известью (7) — для поглощения СО2. O2 подают в ка­меру из баллона (10) через газовые часы (11). Давление воздуха в камере поддерживают на постоянном уровне с помощью сосуда с резиновой мембраной (9).

10.2.1.2. Непрямая калориметрия

Методы прямой калориметрии очень громоздки и сложны. Учи­тывая, что в основе теплообразования в организме лежат окис­лительные процессы, при которых потребляется 02 и образуется СОг, можно использовать косвенное, непрямое, определение теп­лообразования в организме по его газообмену — учету количества


потребленного О2 и выделенного СО2 с последующим расчетом теплопродукции организма.

Для длительных исследований газообмена используют спе­циальные респираторные камеры (закрытые способы непрямой калориметрии) (рис. 10.2). Кратковременное определение газооб­мена в условиях лечебных учреждений и производства проводят более простыми некамерными методами (открытые способы кало­риметрии).

Наиболее распространен способ Дугласа — Холдейна, при котором в течение 10—15 мин собирают выдыхаемый воз­дух в мешок из воздухонепроницаемой ткани (мешок Дугласа), укрепляемый на спине обследуемого (рис. 10.3.). Он дышит через загубник, взятый в рот, или резиновую маску, надетую на лицо. В загубнике и маске имеются клапаны, устроенные так, что обсле­дуемый свободно вдыхает атмосферный воздух, а выдыхает воз­дух в мешок Дугласа. Когда мешок наполнен, измеряют объем выдохнутого воздуха, в котором определяют количество О2 и СО2.

Кислород, поглощаемый организмом, используется для окис­ления белков, жиров и углеводов. Окислительный распад 1 г каж­дого из этих веществ требует неодинакового количества О2 и со­провождается освобождением различного количества тепла. Как видно из табл. 10.2, при потреблении организмом 1 л О2 освобож­дается разное количество тепла в зависимости от того, на окисле­ние каких веществ О2 используется.


Таблица10.2. Потребление кислорода и высвобождение тепла при окислении различных веществ в организме

Веществ о, Количество тепла, Количество Количество освобож-
окисляющееся освобождающееся потребляемого дающейся при окис-
в организме при окислении 1 г 02, л лении 1 л О2 энергии,
вещества, кДж (ккал) кДж (ккал)

Белки17,17(4,1)0,96619,26(4,60)

Жиры38,94(9,3)2,01919,64(4,69)

Углеводы17,17(4,1)0,83021,14(5,05)

Количество тепла, освобождающегося после потребления ор­ганизмом 1 л Ог, носит название калорического эквивалента кис­лорода. Зная общее количество Ог, использованное организмом, можно вычислить энергетические затраты только в том случае, если известно, какие вещества — белки, жиры или углеводы, оки­слились в теле. Показателем этого может служить дыхательный коэффициент.

Дыхательным коэффициентом (ДК) называется отношение объема выделенного СО2 к объему поглощенного О2- Дыхательный коэффициент различен при окислении белков, жиров и углеводов. Для примера рассмотрим, каков будет дыхательный коэффициент при использовании организмом глюкозы. Общий итог окисления молекулы глюкозы можно выразить формулой:

с6н12о6 + 6 о2 = 6 со2 + 6 н2о.

При окислении глюкозы число молекул образовавшегося С02 равно числу молекул затраченного (поглощенного) О2. Равное количество молекул газа при одной и той же температуре и одном и том же давлении занимает один и тот же объем (закон Авогад-ро — Жерара). Следовательно, дыхательный коэффициент (отно­шение СО2/О2) при окислении глюкозы и других углеводов равен единице.

При окислении жиров и белков дыхательный коэффициент бу­дет ниже единицы. При окислении жиров дыхательный коэффици­ент равен 0,7. Проиллюстрируем это на примере окисления три-пальмитина:

2 СзН5 (С15Н31СОО)з + 145 02 = 102 С02 + 98 Н20.

Отношение между объемами углекислого газа и кислорода сос­тавляет в данном случае:

102CO2/142O2=0.703

Аналогичный расчет можно сделать и для белка; при его окис­лении в организме дыхательный коэффициент равен 0,8. При сме­шанной пище у человека дыхательный коэффициент обычно ра­вен 0,85—089. Определенному дыхательному коэффициенту соот-


ветствует определенный калорический эквивалент кислорода, что видно из табл. 10.3.