Смекни!
smekni.com

№47 : Фармация Физиология «жкт» (стр. 4 из 120)

ЙОД
Функции:
- участвует в образовании гормона щитовидной железы - тироксина,
- контролирует состояние энергетического обмена,
- обеспечивает нормальное физическое и психическое развитие,
- влияет на состояние центральной нервной системы, эмоций,
- обеспечивает работу печени, сердечно-сосудистой системы,
- влияет на водно-солевой, углеводный и липидный обмены,
- усиливает метаболические процессы в организме.
Источник:
Морские водоросли, морская рыба, мясо, молоко, йодированная поваренная соль.
Суточная потребность:
100-150 мкг.
Недостаток:
Нарушение синтеза тироксина и угнетение функции щитовидной железы (эндемический зоб).
Избыток:
Нарушение функций щитовидной железы.

ФТОР
Функции:
- участвует в костеобразовании и процессе образования зубов
Источник:
Рыба (треска, сом), орехи, печень, телятина, баранина, овсяная крупа, чай.
Суточная потребность:
2-3 мг.
Недостаток:
Разрушение зубов.
Избыток:
Поражение зубной эмали.

Режимы мышечной тренировки


Режим мышечной деятельности зависит от интенсивности и длительности функциональной активности мышц. При всякой мышечной работе повышается поглощение кислорода, и чем она интенсивнее, тем кислорода требуется больше.
Однако, даже при максимально интенсивном и глубоком дыхании кровь, в первые секунды не в состоянии обеспечить адекватного напряжения кислорода в мышечной ткани. Возникает кислородный дефицит, который тем больше, чем выше интенсивность работы, следовательно возрастает потребность, так называемый кислородный долг.
Поэтому на начальном этапе в пусковой фазе АТФ восполняется за счет процессов не требующих наличия кислорода в среде: с помощью креатинкиназной реакции и гли колиза. Соответственно уменьшается содержание в мышце креатинфосфата, гликогена, возрастает концентрация лактата. Если эти процессы не в состоянии обеспечить достаточный ресинтез АТФ то уровень ее в клетке снижается.

Анаэробный режим мышечной тренировки

Если интенсивность мышечной работы максимальна, а длительность кратковременна, то пусковой фазой все и заканчивается. Быстро расходуется креатинфосфат, гликоген, а в мышце накапливается лактат. Возникает быстрое утомление. Эта фаза не может продолжаться более 10 - 30 мин. Данный режим принято называть анаэробным.
Анаэробная производительность организма - обеспечение мышечной деятельности организма за счет энергии анаэробных реакций в условиях дефицита кислорода с накоплением в тканях кислых продуктов обмена (молочной кислоты).

Анаэробно-аэробный режим мышечной тренировки

При работах субмаксимальной интенсивности, но большей длительности в условиях относительного кислородного голодания (когда интенсивность газообмена крови еще не успевает за интенсивностью метаболизма мышцы) изменения в пусковой фазе станут менее резкими, а сама пусковая фаза станет более короткой. Значение креатинкиназного пути значительно уменьшается, гликолиз еще эффективен. Тенденция к накоплению лактата сохраняется, однако, его концентрация растет медленнее.
Начинает включаться и аэробное дыхание, но роль его еще незначительна, т.к. многие ферменты заблокированы низким уровнем pH (высоким содержанием кислот), неадекватно снабжение кислородом тканей. Субстратом для мышечной деятельности окажется не столько гликоген мышц, сколько глюкоза крови приносимая из печени, наряду с этим параллельно постепенной активации и преобладании аэробных процессов начинает активироваться и распад жировой ткани.
В этот период на долю окисляемых углеводов приходится 67% окисляемых субстратов, а на долю аэробно окисляемых жирных кислот 33%. Снижение уровня АТФ на фоне частичного возмещения замедляется, расход мышечного гликогена становится менее значительным, медленно ресинтезируется креатинфосфат, т.е. восполняются потраченные резервы мышцы.
Учитывая, что доля жирных кислот, окисляемых при такой функциональной активности мышц, составляет не более 1/3 для снижения жировой ткани его применять не рекомендуется. Данный режим принято называть анаэробно-аэробным или смешанным.

Аэробный режим мышечной тренировки

При мышечной работе еще меньшей интенсивности и еще большей длительности, восстанавливается динамичное равновесие между снабжением ткани кислородом и интенсивностью физической нагрузки, возникает так называемое "устойчивое состояние". Преобладающим в этот период является аэробный ресинтез АТФ.
Уровень АТФ, креатинфосфата и гликогена в мышцах возрастает и стабилизируется. Растет потребление гликогена печени, активно мобилизуются из подкожно-жировой клетчатки жиры, которые расщепляются на глицерин и жирные кислоты, а затем поступают в кислородный реактор клетки. При этом аэробное окислительное фосфорилирование составляет 95%, анаэробный гликолиз менее 5%, а окисляемые субстраты состоят на 13% из углеводов и на 87% из жирных кислот. Данный режим принято называть аэробным.
Таким образом, существует определенная последовательность включения и преобладания различных путей ресинтеза АТФ по мере продолжительности и интенсивности мышечной работы. Первые 2-3 секунды расщепление только АТФ, затем с 3 по 20 секунду ресинтез АТФ осуществляется за счет креатинфосфата, на 40 секунде работы максимальной мощности достигает гликолиз, в дальнейшем постепенно все больше превалирует аэробное окисление.
Аэробная производительность организма - обеспечение мышечной деятельности организма за счет энергии аэробных реакций в условии достаточного поступления, транспорта и утилизации кислорода клетками.

Синтез АТФ


АТФ - это сокращенное название аденозинтрифосфорной кислоты. АТФ содержится в каждой клетке животных и растений. Количество АТФ колеблется и в среднем составляет 0.04% (на сырую массу клетки). Наибольшее количество АТФ содержится в скелетных мышцах - 0.2 - 0.5%. По химической структуре АТФ является нуклеотидом, и, как у всякого нуклеотида, в ней имеются азотистое основание (адеин), углевод (рибоза) и фосфорная кислота. Однако в части, содержащей фосфорную кислоту, молекула АТФ имеет существенные отличия от обычных нуклеотидов. У нее в этой части сконденсированы три молекулы фосфорной кислоты. Это очень неустойчивая структура. Самопроизвольно и значительно быстрее под влиянием фермента в АТФ разрывается связь между Р и О и к освободившимся связям присоединяется одна или две молекулы воды, причем отщепляется одна или две молекулы фосфорной кислоты. Это очень неустойчивая структура. Самопроизвольно и значительно быстрее под влиянием фермента в АТФ разрывается связь между Р и О и к освободившимся связям присоединяется одна или две молекулы воды, причем отщепляется одна или две молекулы фосфорной кислоты.
Если отщепляется одна молекула фосфорной кислоты, то АТФ переходит в АДФ, т. е. в аденозиндифосфорную кислоту. Если отщепляется две молекулы фосфорной кислоты, то АТФ переходит в АМФ, т. е. а аденозинмонофосфорную кислоту. Реакция отщепления каждой молекулы фосфорной кислоты от АТФ сопровождается большим энергетическим эффектом, а именно отщепление одной грамм-молекулы фосфорной кислоты сопровождается освободжением почти 40 кдж. Это очень большая величина. Все другие экзотермические реакции клетки сопровождаются значительно меньшим выходом энергии. Самые эффективные из них дают не более 8 - 10 кдж. Чтобы подчеркнуть такую особенно высокую энергетическую эффективность фосфорнокислородной связи в АТФ, ее называют связью, богатой энергией, или макроэргической связью и наличие такой связи обозначают знаком ~. В АТФ имеются две макроэргические связи.
АТФ играет центральную роль в клеточных превращениях энергии. АТФ в реакциях, как правило, теряет одну молекулу фосфорной кислоты и переходит при этом в АДФ. Из АДФ путем присоединения фосфорной кислоты снова синтезируется АТФ. Понятно, что эта реакция идет с поглощением энергии 40 кдж/моль (10 ккал/моль).

ФИЗИОЛОГИЯ ПИЩЕВАРЕНИЯ

Под пищеварением понимают совокупность физических, химических и физиологических процессов, обеспечивающих обработку и превращение пищевых продуктов в форму: доступную для усвоения клетками организма. Физические изменения заключаются в размельчении пищи, перемешивании и растворении. Химические воздействия на пищевые продукты осуществляют ферменты пищеварительных желез. Ферментативному воздействию подвергаются белки, жиры и углеводы. Вода, минеральные соли, витамины поступают в кровь в неизмененном виде.
В результате обработки пищи организм человека получает энергетические субстраты, пластический материал: необходимый для роста и воспроизведение клеток.
ПИЩЕВАРЕНИЕ В РОТОВОЙ ПОЛОСТИ
В ротовой полости происходит механическое размельчение пищи, под воздействием секрета слюнных желез и жевательных движений происходит перемешивание, смачивание пищи, формирование пищевого комка. Функции слюны:
1) пищеварительная, осуществляется за счет ферментов - амилазы и мальтазы, воздействующих преимущественно на крахмал,
2) благодаря растворению пищевых веществ слюна обеспечивает воздействие на вкусовые рецепторы и способствует возникновению вкусовых ощущений,
3) слюна смачивает благодаря муцину отдельные частицы пищи и тем самым участвует в формировании пищевого комка,
4) слюна стимулирует секрецию желудочно-кишечного сока,
5) слюна необходима для акта глотания.
Пища находится в ротовой полости непродолжительное время 15 - 30 с, поэтому в ротовой полости не происходит полного расщепления крахмала. Однако действие слюны продолжается некоторое время в желудке, где продолжается переваривание крахмала.
ПИЩЕВАРЕНИЕ В ЖЕЛУДКЕ
Химическая обработка пищи в полости желудка осуществляется за счет ферментов желудочного сока и слюны. Механическая обработка обеспечивается за счет моторной деятельности. Под влиянием химических и механических воздействий пищевые комки в желудке превращаются в пищевую кашицу (химус).
ФУНКЦИИ ЖЕЛУДКА
Секреторная функция обеспечивается железами слизистой оболочки желудка. Моторная функция обеспечивается за счет сокращения мускулатуры стенки желудка, благодаря чему происходит перемешивание пищи и продвижение ее в двенадцатиперстную кишку. Всасывательная функция способствует поступлению в организм минеральных веществ, воды, продуктов расщепления белка.
СОСТАВ ЖЕЛУДОЧНОГО СОКА
Желудочный сок представлен органическими и неорганическими веществами. Главной неорганической частью является соляная кислота. Органическая часть желудочного сока состоит из белковых и небелковых компонентов. Из небелковых это азот, мочевина, аммиак, молочная кислота, аминокислоты, полипептиды.
Из белковых - муцин и гастромукопротеид (внутренний фактор Касла), ферменты.
Муцин предохраняет слизистую оболочку желудка от агрессивного действия соляной кислоты, а также механического воздействия пищи. Он также предотвращает разрушение витаминов С, группы В, возбуждает секрецию желудочных желез и поджелудочной железы. Гастромукопротеин необходим для всасывания витамина В12, при взаимодействии с которым образуется антианемический фактор. Ферменты составляют главную часть органических веществ, входящих в состав желудочного сока. К ним относят пепсин, гастриксин, химозин. Первостепенная роль среди ферментов принадлежит пепсину. В активную форму он переходит при воздействии соляной кислоты и проявляет свое действие только в кислой среде.
Пепсин расщепляет белки.
Гастриксин расщепляет желатину, которая в большом количестве содержится в соединительной ткани.
Химозин вызывает створаживание молока и переводит растворимый белок казеиноген в нерастворимый казеин. Способность к расщеплению углеводов и жиров в желудке слабая.
Переваривание углеводов осуществляется амилазой и мальтазой слюны под прикрытием муцина.
Самая высокая кислотность желудочного сока наблюдается при переваривании белковой пищи животного происхождения, самая низкая при переваривании углеводов. Установлено, что белки растительного происхождения лучше перевариваются в среде с невысокой кислотностью желудочного сока.
К веществам способным стимулировать выделение желудочного сока относят: экстрактивные вещества мяса и печени (бульоны), спирты, продукты расщепления пищи. Секреция желудка тормозится продуктами расщепления жира.
Эвакуация из желудка происходит через 6-10 часов. Углеводистая пища эвакуируется быстрее, чем пища богатая белками. А жирная пища может задерживаться в желудке очень долго, до 10 часов.
Открытие пилорического сфинктера происходит вследствие раздражения слизистой оболочки пилорического отдела соляной кислотой. Открывается сфинктер привратника и содержимое желудка поступает в двенадцатиперстную кишку (ДПК), среда в ДПК становится кислой вместо щелочной. Это способствует рефлекторному закрытию сфинктера привратника. Начинается процесс переваривания в ДПК.
ПИЩЕВАРЕНИЕ В ДВЕНАДЦАТИПЕРСТНОЙ КИШКЕ
В ДПК изливаются три вида пищеварительных соков: панкреатический (сок поджелудочной железы), желчь, кишечный сок. Все они имеют выраженную щелочную реакцию. В состав поджелудочного и кишечного сока входят три вида ферментов, расщепляющих белки, жиры и углеводы.
Протеолитические ферменты: трипсин, химотрипсин, эластаза, карбоксипептидазы. Роль протеолитических ферментов заключается в распаде нативных белков и продуктов их первичной обработки в желудке (альбумоз и пептонов) до низкомолекулярных полипептидов и аминокислот.
Амилолитические ферменты: альфа-амилаза. Их роль состоит в дальнейшем расщеплении углеводов до глюкозы и мальтозы.
Липолитические ферменты: липаза, фосфолипаза А. Липаза секретируется в активном состоянии, ее активность возрастает под действием желчных кислот. Липаза расщепляет жиры до глицерина и жирных кислот.
В регуляции пищеварения в ДПК существенную роль отводят соляной кислоте. Она активирует биологически активное вещество просекретин и переводит его в секретин, который резко усиливает выделение пищеварительных соков в ДПК.
При сопоставлении количества панкреатического сока, выделившегося при употреблении белковой, углеводной и жирной пищи, отмечено наибольшее количество сока выделяется на углеводную пищу, а наименьшее на жирную. При этом сок полученный на белковую пищу животного происхождения имел более щелочную реакцию, чем сок выделяющийся на углеводную и жирную пищу. Отмечено также, что поджелудочная железа обладает способностью за счет изменения количества отделяемого сока и состава ферментов приспосабливаться к переработке различной по объему и качеству пищи.
СОСТАВ И ФУНКЦИЯ ЖЕЛЧИ
Желчь - продукт секреции печеночных клеток, представляет собой жидкость золотисто-желтого цвета, имеющую щелочную реакцию. Основными компонентами желчи являются желчные кислоты (преимущественно холевая), пигменты (билирубин и биливердин) и холестерин. Различают желчь печеночную и желчь пузырную (находящуюся в полости желчного пузыря). Отличия пузырной желчи от печеночной состоит в том, что слизистая оболочка пузыря продуцирует муцин и обладает способность всасывать воду, поэтому в пузыре желчь имеет вязкую и тягучую консистенцию. Основные функции желчи:
- повышает активность ферментов панкреатического сока, особенно липазы,